神经网络算法 - 一文搞懂ANN(人工神经网络)

本文详细介绍了生物神经网络的基础概念,人工神经网络(ANN)的定义、工作原理,包括其结构、训练方法(如前向传播、反向传播和梯度下降),以及各类神经网络如FNN、RNN、CNN、LSTM和GAN的应用实例,涵盖了图像处理、语音识别和自然语言处理等领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文将从生物神经网络、人工神经网络、神经网络训练、分类与应用四个方面,带您一文搞懂人工神经网络ANN。

基本定义

  • 百度百科: 生物神经网络(Biological Neural Networks)一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。

  • 维基百科:生物神经网络(Biological Neural Networks)是指生物体内一群由突触相互链接的特定神经元群体,其负责传递、执行一项特定功能,并与其他神经回路共同构筑大脑更高阶的神经网络,并产生个体的意识,协助生物进行思考和行动。

大脑神经元

  • 输入整合:神经元整合来自其他神经元和外部刺激的信号。

  • 阈值触发:达到阈值时,神经元触发动作电位。

  • 权重调整:连接强度可学习调整。

  • 信息存储与传输:神经元负责存储和传输信息,支持生物的感知、思考和行为。

  • 神经网络组成:多个神经元以特定方式连接形成神经网络。

图片
大脑神经元结构

二、人工神经网络

基本定义:

  • 百度百科: 人工神经网络**(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。

  • 维基百科: 人工神经网络(artificial neural network,ANN)简称神经网络(neural network,NN)或类神经网络,在机器学习和认知科学领域,是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。

基本原理:

图片人工神经网络结构

  1. 圆形节点与人工神经元:
  • 在人工神经网络中,每个圆形节点代表一个人工神经元。

  • 这些神经元通过特定的连接方式相互交互,模拟生物神经网络的工作原理。

  1. 连接与信号传递:
  • 箭头表示从一个神经元的输出到另一个神经元的输入的连接。

  • 通过这些连接,信号可以在网络中传递,从一个人工神经元传递到另一个。

  1. 权重与激励函数:
  • 每个节点都代表一种特定的输出函数,称为激励函数。

  • 每两个节点间的连接都有一个与之相关的权重值,表示前一个神经元对后一个神经元的影响程度。

  1. 网络输出:
  • 网络的输出会根据网络的连接方式、权重值以及激励函数的不同而变化。

  • 通过调整这些参数,人工神经网络能够学习和适应不同的输入模式,产生预期的输出结果。

三、神经网络训练

训练步骤:

  1. 前向传播:
  • 输入数据从输入层开始,逐层通过隐藏层传递。

  • 每一层都使用激活函数进行非线性转换。

  • 最终,输出层生成预测结果。

  1. 计算误差:
  • 将预测结果与真实标签比较,计算误差(如均方误差或交叉熵损失)。
  1. 反向传播:
  • 使用反向传播算法,将误差从输出层逐层反传至输入层。

  • 在此过程中,计算每一层的梯度(误差对权重和偏置的偏导数)。

  1. 梯度下降:
  • 根据计算得到的梯度,使用梯度下降或其他优化算法更新权重和偏置。

  • 目标是最小化误差函数,通过逐步调整权重和偏置来改善网络性能。

  1. 迭代更新:
  • 重复上述步骤,直到满足停止准则(如达到最大迭代次数或误差小于预设阈值)。

核心算法:

  1. 激活函数:
  • 作用:决定神经元是否“激活”或“触发”。

  • 常见类型:ReLU、Sigmoid、Tanh等。

  • 重要性:增加网络的非线性,使其能学习复杂模式。

  1. 反向传播:
  • 作用:神经网络中权重更新的核心算法。

  • 过程:计算输出层与真实值之间的误差,并反向逐层传递误差,更新权重。

  • 重要性:使网络能基于误差进行自我调整,逐渐逼近目标函数。

  1. 梯度下降:
  • 作用:优化算法,用于在训练过程中最小化损失函数。

  • 过程:计算损失函数的梯度,并沿梯度的反方向逐步更新网络参数。

  • 重要性:使网络参数逐渐趋近于损失最小的点。

四、分类与应用

算法分类:

  1. 前馈神经网络 (Feedforward Neural Networks,FNN)
  • 特点:数据单向流动,从输入层到输出层。多层网络结构,每层神经元只接收前一层的输出作为输入。

  • 应用:感知器、多层感知器、逻辑回归等。

  1. 循环神经网络 (Recurrent Neural Networks,RNN)
  • 特点:具有循环结构,能够处理序列数据和时序依赖关系。神经元的输出可以作为自身的输入,记忆先前状态的信息。

  • 应用:文本生成、语音识别、机器翻译等。

  1. 卷积神经网络 (Convolutional Neural Networks,CNN)
  • 特点:适用于处理图像、视频等二维或三维数据。通过卷积层捕捉局部特征,池化层进行下采样,减少参数数量。

  • 应用:图像识别、目标检测、图像生成等。

  1. 长短期记忆网络(Long Short-Term Memory Networks,LSTM)
  • 特点:解决长期依赖问题,通过引入记忆单元和门控机制来控制信息的流动。

  • 应用:语音识别、文本生成、情感分析等。

  1. 生成对抗网络 (Generative Adversarial Networks,GANs)
  • 特点:结合了生成模型和判别模型的思想,用于生成新的、与真实数据相似的数据。

  • 应用:图像生成、视频生成和语音合成等领域有所应用。

实际应用:

  1. 图像处理与识别
  • 图像分类:使用卷积神经网络(如VGG、ResNet)对ImageNet等大型图像数据集进行分类,达到人类级别的准确度。

  • 图像生成:GANs(生成对抗网络)用于生成逼真的人脸、风景等图像。

  1. 语音处理与识别
  • 语音识别:RNN和LSTM在语音到文本转换中的应用,如Google的语音识别技术。

  • 语音合成:WaveNet等模型用于生成自然的人类语音。

  1. 自然语言处理
  • 文本分类:使用RNN或Transformer结构对文本进行情感分析、主题分类等。

  • 机器翻译:Google NMT(神经机器翻译)使用Transformer结构进行高质量的文本翻译。

### 人工神经网络概述 人工神经网络(Artificial Neural Network, ANN)是一种模拟人脑神经元网络结构和工作方式的计算模型,由大量的人工神经元组成,并通过这些神经元之间的连接来传递信息[^2]。这种模型从信息处理的角度对人脑神经元网络进行了抽象,建立了简单的数学模型并按照不同方式进行连接形成复杂的网络结构[^3]。 #### ANN的工作机制 具体来说,在一个多层感知器类型的ANN中: - 输入信号 \( x_i \) 被送入隐藏层中的各个节点; - 隐藏层第\( h \)个神经元接收到加权后的输入信号之和作为其净输入\[ α_h=\sum_{i=1}^{d}{v_{ih}x_i}\][^1]; - 接着该神经元会应用激活函数\( f() \),加上偏置项\( γ_h \),得到最终输出\[ b_h=f(α_h+γ_h)\]; - 这些来自隐藏层的结果再成为下一层——输出层各单元的新输入源; - 输出层第\( j \)个神经元接收到来自所有前向关联的隐含层单位经过权重调整过的贡献总和\[ β_j=\sum_{h=1}^{q}{w_{hj}b_h}\]; - 同样地,这个值也会被传给激活函数以及相应的阈值参数\( θ_j \),从而得出整个系统的预测输出\[ y_j=f(β_j+θ_j)\]; 因此,ANN能够通过对输入数据的学习自动提取特征,并利用所学得的知识完成分类、回归等各种任务。 ```python import numpy as np def activate(x): return 1 / (1 + np.exp(-x)) # Sigmoid activation function example # Example of computing output for a single neuron in hidden layer and then an output neuron alpha_h = sum([vi * xi for vi, xi in zip(v_weights, inputs)]) bh = activate(alpha_h + gamma) beta_j = sum([wj * bh for wj in w_weights]) yj = activate(beta_j + theta) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值