最近秋招发放Offer已高一段落。
不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。
最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。
喜欢本文记得收藏、关注、点赞。更多实战和面试交流,文末加入我们
技术交流
ChatGPT 爆火的时候,我心里就燃起了一个想法:打造一个专属于自己的AI知识库,它就像我的第二大脑一样,能记住我生活里的点点滴滴。
我随口一问“去年5月我做了什么”,它不仅能精准找到记录,还能帮我回忆起那些差点被遗忘的细节!但这么隐私的东西,用在线服务肯定不放心,必须得在自己电脑上运行才行。
现在,机会来啦!有了能全本地部署的deepseek-r1和bge-m3,再加上界面超优雅的Cherry Studio,这个梦想终于能照进现实。
话不多说,我就把详细的部署教程分享给大家,记得先看两条注意事项:
-
设备要求:我这次是在苹果M系列芯片、16G内存的MacBook Pro上操作的。Mac有统一内存和显存,但类似配置的PC除了16G及以上内存外,还得有额外显存分配才能正常运行哦。
-
模型效果:先别吐槽非满血版deepseek-r1的效果,学会部署才是第一步,开源模型发展可快了,一年前谁能想到端侧大模型现在这么厉害呢,以后肯定会更好!
接下来,跟着我的步骤,一步步搭建属于你的个人AI知识库吧!
下载安装ollama
直接点击链接https://ollama.com/download ,根据自己的电脑系统选择对应的安装包下载。安装好后,双击打开它就行。
下载DeepSeek-R1
打开终端,输入命令“ollama run deepseek-r1:14b”,回车后模型就开始下载啦,记得提前看看电脑硬盘空间够不够。
等下载完成,看到“>>>"提示符,就能和模型聊天了,比如问“你是什么模型?”,它会回答你呢。
要是不想用这个模型了,删除命令是“ollama rm deepseek-r1:14b”,想查看已安装模型,就用“ollama list” 命令。
如果想探索更多尺寸的模型,下载命令可以在这个链接找到:https://ollama.com/library/deepseek-r1 ,ollama还支持同时安装多个模型,像阿里通义千问qwen2.5、智谱GLM-4这些都能试试。
下载embedding模型
在终端输入“ollama pull bge-m3”
等看到“success”提示,就说明下载完成,关闭终端就行。
这个模型的作用是把知识库里的文档内容转化为便于搜索的向量,简单理解就是处理知识库文档数据的。
安装Cherry Studio
访问https://cherry-ai.com,根据电脑芯片类型选择对应版本下载安装。除了Cherry Studio,像Chatbox、Enchanted、OpenWebUI)这些同类产品也很有意思,感兴趣可以都体验下。
配置模型提供商
Ollama,添加LLM语言模型和embedding嵌入模型:启动Cherry Studio,依次点击左下角设置 - 模型服务 - Ollama,开启Ollama,API地址保持默认。
点击管理按钮,就能看到自动读取到之前下载的deepseek-r1:14b和bge-m3[嵌入]模型,点击添加就完成配置啦。
对了,在模型服务设置里,还能看到Cherry Studio支持的其他模型提供商。
创建知识库
点击Cherry Studio左侧的知识库按钮,再点“添加”,给知识库取个名字,嵌入模型选bge-m3,确定后就创建好啦。
之后可以添加文件或者直接把文件拖拽进去,支持pdf、docx等多种格式,像个人简历、日记都能放进去。
添加文件后会有个蓝色小点loading的处理过程,出现绿色小勾就代表文档能被检索到。这背后用的是RAG技术,AI接收到问题后,会先从知识库里找相关片段,再结合自身知识回复你,这样AI就能“知道”训练时没有的个人信息啦。
现在,回到聊天界面,顶部选deepseek-r1:14b|Ollama模型,输入框下方选中刚创建的知识库,试试问一个模型原本不知道的问题,见证它的神奇吧!
是不是很有成就感?赶紧动手搭建属于你的个人AI知识库,开启高效生活新体验!