# Deep Learning中常见图、线的绘制 -- ROC、PR、箱线图、折线图、损失变化图

245 篇文章 1 订阅

• 导包

import matplotlib.pyplot as plt

import numpy as np

from sklearn.metrics import roc_curve, auc, precision_recall_curve

from scipy.interpolate import interp1d

plt.figure(1)

## 3.计算fpr、tpr及roc曲线的面积

fpr, tpr, thresholds = roc_curve((gt), pred)

roc_auc = auc(fpr, tpr)

## 4.绘制roc曲线

plt.plot(fpr, tpr, label=‘UNet (area = {:.4f})’.format(roc_auc), color=‘blue’)

## 5.格式个性化

font1 = {

‘weight’ : ‘normal’,

‘size’ : 14, }

plt.xlabel(“FPR (False Positive Rate)”, font1)

plt.ylabel(“TPR (True Positive Rate)”, font1)

plt.legend(loc=“lower right”, fontsize=12)

plt.xticks(fontsize=13)

plt.yticks(fontsize=13)

plt.axis([0, 1, 0.70, 1])

plt.title(‘ROC Curve’, font1)

plt.show()

print(‘Done!’)

## 2.定义一个画布

plt.figure(1)

precision, recall, thresholds = precision_recall_curve(gt, pred)

precision = np.fliplr([precision])[0] # so the array is increasing (you won’t get negative AUC)

recall = np.fliplr([recall])[0] # so

the array is increasing (you won’t get negative AUC)

AUC_prec_rec = np.trapz(precision, recall)

plt.plot(recall, precision, ‘-’, label=‘UNet (area = %.4f)’ % AUC_prec_rec, color=‘blue’)

font1 = {

‘weight’ : ‘normal’,

‘size’ : 14, }

plt.title(‘Precision Recall Curve’, font1)

plt.xlabel(“Recall”, font1)

plt.ylabel(“Precision”, font1)

plt.xticks(fontsize=12)

plt.yticks(fontsize=12)

plt.legend(loc=“lower left”, fontsize=8)

plt.axis([0.2, 0.9, 0.7, 1])

plt.show()

a = np.random.randn(5)

x_list = [‘a’, ‘b’, ‘c’, ‘d’, ‘e’]

fig = plt.figure()

plt.plot(x_list, a, marker=‘o’, markersize=3)

for a, b in zip(x_list, a):

plt.text(a, b, b, ha=‘center’, va=‘top’, fontsize=8)

plt.legend([‘line’])

plt.show()

data_list = []

a = np.random.randn(10)

b = np.random.randn(10)

c = np.random.randn(10)

d = np.random.randn(10)

e = np.random.randn(10)

data_list.append(a)

data_list.append(b)

## 最后

• Java基础部分

• 算法与编程

• 数据库部分

• 流行的框架与新技术（Spring+SpringCloud+SpringCloudAlibaba）

Cloud+SpringCloudAlibaba）

[外链图片转存中…(img-c1ObiqO5-1716406668975)]

• 28
点赞
• 23
收藏
觉得还不错? 一键收藏
• 1
评论
06-16 4408
04-23 350
07-23 1412
11-21 4134

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、付费专栏及课程。