由以上步骤可以看出,GrabCut是一个循环执行的算法,其循环的目的是为了EM(Expectation Maximization)。因为用户提供的矩形内也有部分背景像素,所以这样的种子是不完全正确的。好在GMM模型并不要求所有的训练数据正确,即使有一部分分类不正确,也可以通过EM步骤使得最终结果正确。而GrabCut正是利用了GMM的这一特性。值得注意的是,GMM有陷入局部最优的问题无法解决,所以GrabCut也有此问题。
算法论文地址:www.microsoft.com/en-us/resea…
API
public static void grabCut(Mat img, Mat mask, Rect rect, Mat bgdModel, Mat fgdModel, int iterCount, int mode)
-
参数一:img,输入的待分割图像。必须是8位三通道。
-
参数二:mask,输入/输出8位单通道掩码图像。图像中像素值取值及其含义如下。
标志位 | 值 | 含义 |
---|---|---|
GC_BGD | 0 | 一个明显为背景的像素 |
GC_FGD | 1 | 一个明显为前景(对象)的像素 |
GC_PR_BGD | 2 | 一个可能为背景的像素 |
GC_PR_FGD | 3 | 一个可能为前景的像素 |
-
参数三&#