收集整理了一份《2024年最新Python全套学习资料》免费送给大家,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Python知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来
如果你需要这些资料,可以添加V无偿获取:hxbc188 (备注666)
正文
#-- coding:utf8 --
from PIL import Image
im = Image.open(“captcha.gif”)
#(将图片转换为8位像素模式)
im = im.convert(“P”)
#打印颜色直方图
print im.histogram()
输出:
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0 , 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 1, 2, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 1, 3, 3, 0, 0, 0, 0, 0, 0, 1, 0, 3, 2, 132, 1, 1, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 15, 0 , 1, 0, 1, 0, 0, 8, 1, 0, 0, 0, 0, 1, 6, 0, 2, 0, 0, 0, 0, 18, 1, 1, 1, 1, 1, 2, 365, 115, 0, 1, 0, 0, 0, 135, 186, 0, 0, 1, 0, 0, 0, 116, 3, 0, 0, 0, 0, 0, 21, 1, 1, 0, 0, 0, 2, 10, 2, 0, 0, 0, 0, 2, 10, 0, 0, 0, 0, 1, 0, 625]
颜色直方图的每一位数字都代表了在图片中含有对应位的颜色的像素的数量。
每个像素点可表现256种颜色,你会发现白点是最多(白色序号255的位置,也就是最后一位,可以看到,有625个白色像素)。红像素在序号200左右,我们可以通过排序,得到有用的颜色。
his = im.histogram()
values = {}
for i in range(256):
values[i] = his[i]
for j,k in sorted(values.items(),key=lambda x:x[1],reverse = True)[:10]:
print j,k
输出:
255 625
212 365
220 186
219 135
169 132
227 116
213 115
234 21
205 18
184 15
我们得到了图片中最多的10种颜色,其中 220 与 227 才是我们需要的红色和灰色,可以通过这一讯息构造一种黑白二值图片。
#-- coding:utf8 --
from PIL import Image
im = Image.open(“captcha.gif”)
im = im.convert(“P”)
im2 = Image.new(“P”,im.size,255)
for x in range(im.size[1]):
for y in range(im.size[0]):
pix = im.getpixel((y,x))
if pix == 220 or pix == 227: # these are the numbers to get
im2.putpixel((y,x),0)
im2.show()
得到的结果:
提取单个字符图片
接下来的工作是要得到单个字符的像素集合,由于例子比较简单,我们对其进行纵向切割:
inletter = False
foundletter=False
start = 0
end = 0
letters = []
for y in range(im2.size[0]):
for x in range(im2.size[1]):
pix = im2.getpixel((y,x))
if pix != 255:
inletter = True
if foundletter == False and inletter == True:
foundletter = True
start = y
if foundletter == True and inletter == False:
foundletter = False
end = y
letters.append((start,end))
inletter=False
print letters
#在学习Python的过程中,往往因为没有资料或者没人指导从而导致自己不想学下去了,因此我特意准备了个群 592539176 ,群里有大量的PDF书籍、教程都给大家免费使用!不管是学习到哪个阶段的小伙伴都可以获取到自己相对应的资料!
输出:
[(6, 14), (15, 25), (27, 35), (37, 46), (48, 56), (57, 67)]
得到每个字符开始和结束的列序号。
import hashlib
import time
count = 0
for letter in letters:
m = hashlib.md5()
im3 = im2.crop(( letter[0] , 0, letter[1],im2.size[1] ))
m.update(“%s%s”%(time.time(),count))
im3.save(“./%s.gif”%(m.hexdigest()))
count += 1
(接上面的代码)
对图片进行切割,得到每个字符所在的那部分图片。
AI 与向量空间图像识别
在这里我们使用向量空间搜索引擎来做字符识别,它具有很多优点:
-
不需要大量的训练迭代
-
不会训练过度
-
你可以随时加入/移除错误的数据查看效果
-
很容易理解和编写成代码
-
提供分级结果,你可以查看最接近的多个匹配
-
对于无法识别的东西只要加入到搜索引擎中,马上就能识别了。
当然它也有缺点,例如分类的速度比神经网络慢很多,它不能找到自己的方法解决问题等等。
向量空间搜索引擎名字听上去很高大上其实原理很简单。拿文章里的例子来说:
你有 3 篇文档,我们要怎么计算它们之间的相似度呢?2 篇文档所使用的相同的单词越多,那这两篇文章就越相似!但是这单词太多怎么办,就由我们来选择几个关键单词,选择的单词又被称作特征,每一个特征就好比空间中的一个维度(x,y,z 等),一组特征就是一个矢量,每一个文档我们都能得到这么一个矢量,只要计算矢量之间的夹角就能得到文章的相似度了。
用 Python 类实现向量空间:
import math
class VectorCompare:
#计算矢量大小
def magnitude(self,concordance):
total = 0
for word,count in concordance.iteritems():
total += count ** 2
return math.sqrt(total)
#计算矢量之间的 cos 值
def relation(self,concordance1, concordance2):
relevance = 0
topvalue = 0
for word, count in concordance1.iteritems():
if concordance2.has_key(word):
topvalue += count * concordance2[word]
return topvalue / (self.magnitude(concordance1) * self.magnitude(concordance2))
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、全套PDF电子书
书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。
四、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
五、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
如果你需要这些资料,可以添加V无偿获取:hxbc188 (备注666)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
,刷完这一套面试资料相信大家都能找到满意的工作。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
如果你需要这些资料,可以添加V无偿获取:hxbc188 (备注666)
[外链图片转存中…(img-mFfq2zTz-1713789283545)]
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!