Tensorflow入门(1)——深度学习框架Tesnsflow入门 & 环境配置 & 认识Tensorflow(2)

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化的资料的朋友,可以戳这里获取

在这里插入图片描述

2.会话 Session()

在这里插入图片描述
在这里插入图片描述

• tf.Session()
运行TensorFlow操作图的类,使用默认注册的图(可以指定运行图)
• 会话资源
会话可能拥有很多资源,如 tf.Variable,tf.QueueBase
和tf.ReaderBase,会话结束后需要进行资源释放

  1. sess = tf.Session() sess.run(…) sess.close()
  2. 使用上下文管理器
    with tf.Session() as sess:
    sess.run(…)
    • config=tf.ConfigProto(log_device_placement=True)
    • 交互式:tf.InteractiveSession()
import tensorflow as tf
############ 去除警告
import os
os.environ["TF\_CPP\_MIN\_LOG\_LEVEL"]="2"
# 创建一张图,上下文环境
# 图包含了一组op和tensor
# op:只要使用tensorflow的API定义的函数都是OP
# tensor:就指代的是数据
# 实现一个加法运算
a = tf.constant(5.0)
b = tf.constant(6.0)
sum1 = tf.add(a, b)

# 默认的这张图,相当于是给程序分配一段内存
graph = tf.get\_default\_graph()
print(graph)
# 看出程序在哪里运行
# 只要有上下文环境,就可以方便使用eval()
with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
    print(sess.run(sum1))
    print(sum1.eval())
    print(a.graph)
    print(sum1.graph)


会话的run()方法

在这里插入图片描述

import tensorflow as tf
############ 去除警告
import os
os.environ["TF\_CPP\_MIN\_LOG\_LEVEL"]="2"
# 创建一张图,上下文环境# 图包含了一组op和tensor
# op:只要使用tensorflow的API定义的函数都是OP# tensor:就指代的是数据

# 实现一个加法运算
a = tf.constant(5.0)
b = tf.constant(6.0)
sum1 = tf.add(a, b)
var1=3
## 有重载的机制,默认会给运算符重载成op类型
sum2 = a + var1
print(sum2)
# 训练模型
# 实时的提供数据去进行训练
# placeholder是一个占位符,feed_dict一个字典
plt = tf.placeholder(tf.float32, [2, 3])
plt2=tf.placeholder(tf.float32,[None,3])
print(plt)
# 只要有上下文环境,就可以方便使用eval()# 看出程序在哪里运行
with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
    print(sess.run([a,b,sum1,sum2]))
    print(sess.run(plt,feed_dict={plt:[[1, 2, 3], [4, 5, 36]]}))
    print(sess.run(plt2, feed_dict={plt2: [[1, 2, 3], [4, 5, 36],[3,4,6]]}))
    print(sum1.eval())#输出结果
    print(a.graph)
    print(sum1.graph)

Tensorflow Feed操作
意义:在程序执行的时候,不确定输入的是什么,提前“占个坑”
语法:placeholder提供占位符,run时候通过feed_dict指定参数

3.张量 Tensor

要点:
• Tensorflow基本的数据格式
• 一个类型化的N维度数组(tf.Tensor)
• 三部分,名字,形状,数据类型

(1)张量的形状

在这里插入图片描述

(2)数据类型

在这里插入图片描述

张量属性:
• graph 张量所属的默认图
• op 张量的操作名
• name 张量的字符串描述
• shape 张量形状

with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
    print(sess.run([a,b,sum1,sum2]))
    print(sess.run(plt,feed_dict={plt:[[1, 2, 3], [4, 5, 36]]}))
    print(sess.run(plt2, feed_dict={plt2: [[1, 2, 3], [4, 5, 36],[3,4,6]]}))
    print(sum1.eval())#输出结果
    print(a.graph)
    print(a.shape)
    print(a.name)
    print(a.op)

张量的动态形状与静态形状

在这里插入图片描述

import tensorflow as tf
############ 去除警告
import os
os.environ["TF\_CPP\_MIN\_LOG\_LEVEL"]="2"
#tensorflow中的形状:
# 0维:()   1维:(5)   2维:(5,6)  3维:(2,3,4)2张3行4列的表
# 形状的概念
# 静态形状和动态性状
# 对于静态形状来说,一旦张量形状固定了,不能再次设置静态形状, 不能夸维度修改 1D->1D 2D->2D
# 动态形状可以去创建一个新的张量,改变时候一定要注意元素数量要匹配  1D->2D  1->3D

plt=tf.placeholder(tf.float32,[None,2])
print(plt)
plt.set\_shape([3,2])
print(plt)

plt_reshape=tf.reshape(plt,[2,3])
print(plt_reshape)
with tf.Session() as sess:
    pass


1、转换静态形状的时候,1-D到1-D,2-D到2-D,不能跨阶数改变形状
2、对于已经固定或者设置静态形状的张量/变量,不能再次设置静态形状
3、tf.reshape()动态创建新张量时,元素个数不能不匹配

4.张量操作

(1)生成张量

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(2)张量变换

在这里插入图片描述
在这里插入图片描述
切片与扩展
tf.concat(values, axis, name=‘concat’)

• 算术运算符
• 基本数学函数
• 矩阵运算
• 减少维度的运算(求均值)
• 序列运算

5.变量OP——模型参数

• 变量也是一种OP,是一种特殊的张量,能够进行存储持久化,它的值就是张量

在这里插入图片描述
变量的初始化

tf.global_variables_initializer() 添加一个初始化所有变量的op,在会话中开启

import tensorflow as tf
############ 去除警告
import os
os.environ["TF\_CPP\_MIN\_LOG\_LEVEL"]="2"
a=tf.constant([1,2,3,4])
var = tf.Variable(tf.random\_normal([2,3],mean=0,stddev=1.0))
print(a,var)
#必须做一个显示的初始化
init_op=tf.global\_variables\_initializer()
with tf.Session() as sess:
    #必须运行初始化op
    sess.run(init_op)
    print(sess.run([a,var]))
    pass
# 变量op
# 1、变量op能够持久化保存,普通张量op是不行的
# 2、当定义一个变量op的时候,一定要在会话当中去运行初始化
# 3、name参数:在tensorboard使用的时候显示名字,可以让相同op名字的进行区分



作用域——使得代码图清晰

在这里插入图片描述

tf.variable_scope(<scope_name>)
创建指定名字的变量作用域
观察变量的name改变?

嵌套使用变量作用域
观察变量的name改变?

tensorflow变量作用域的作用:
• 让模型代码更加清晰,作用分明

增加变量显示——观察变化

1.收集变量
       tf.summary.scalar( name =” ”, tensor )
       收集对于损失函数和准确率等单值变量,name为变量名字,tensor为值
       tf.summary.histogram( name =” ”, tensor )
       收集高纬度的变量参数
       tf.summary.image( name =” ”, tensor )
       收集输入的图片,张量能显示图片
2.合并变量,写入事件文件
       merged = tf.summary.merge_all( )
       运行合并:summary = sess.run( merged ) 每次迭代都需要运行
       添加: filewriter.add_summary(summary,i) i表示第几次的值

目的:
观察模型的参数,损失等变量值的变化

6.事件文件与可视化

在这里插入图片描述
在这里插入图片描述

数据序列化-events文件
TensorBoard 通过读取 TensorFlow 的事件文件来运行

tf.summary.FileWriter(‘/tmp/tensorflow/summary/test/’, graph=default_graph)
返回filewriter,写入事件文件到指定目录(最好用绝对路径),以提供给tensorboard使用

开启
Tensorboard --logdir=”./tmp/tensorflow/summary/test/”
一般浏览器打开为127.0.0.1:6006

注:修改程序后,再保存一遍会有新的事件文件,打开默认为最新

在这里插入图片描述

import tensorflow as tf
############ 去除警告
import os
os.environ["TF\_CPP\_MIN\_LOG\_LEVEL"]="2"
a=tf.constant([1,2,3,4])
var = tf.Variable(tf.random\_normal([2,3],mean=0,stddev=1.0))
print(a,var)
#必须做一个显示的初始化
init_op=tf.global\_variables\_initializer()
with tf.Session() as sess:
    #必须运行初始化op
    sess.run(init_op)
    # 把程序的图结构写入事件文件,graph:把指定的图写进事件文件当中
    filewriter=tf.summary.FileWriter('./py_tensflow/', graph=sess.graph)
    pass

Tensorboard --logdir=” F:/python/py_tensflow/”
文件路径 ,没有名字

1.在保存的事件文件所在的文件中输入 cmd

在这里插入图片描述
在这里插入图片描述

2.依次输输入
conda info --envs
activate tensorflow
Tensorboard --logdir=" F:/python/py\_tensflow/"

3.火狐浏览器打开

历史记录中打开即可
http://DESKTOP-PJDM5BE:6006

在这里插入图片描述

案例:线性回归

Tensorflow运算API

矩阵运算
相乘 tf.matmul(x, w)
平方 tf.square(error)
均值 tf.reduce_mean(error)

梯度下降API
在这里插入图片描述

tf.train.GradientDescentOptimizer(learning_rate)
		梯度下降优化
		learning_rate:学习率,一般为
		method:
		return:梯度下降op


版本一:trainable参数

trainable参数:指定这个变量能跟着梯度下降一起优化

import tensorflow as tf
############ 去除警告
import os
os.environ["TF\_CPP\_MIN\_LOG\_LEVEL"]="2"
def myregre():
    '''
    自定义一个线性回归
    :return:None
    '''
    # 1.准备数据,x 特征值 (100,1) y 目标值(100)
    x=tf.random\_normal([100,1],mean=1.75,stddev=0.5,name="x\_data")

    # 矩阵相乘必须是二维的
    y_true=tf.matmul(x,[[0.7]])+0.8

    # 2.建立线性回归模型 1个权重,1个特征,1个偏置 y=x w + b
    # 随机给权重和偏置的,让他计算损失,然后在当前状态下优化
    # 用变量定义才能优化
    weight = tf.Variable(tf.random\_normal([1,1],mean=0.0,stddev=1.0),name="w")
    bias = tf.Variable(0.0,name="b")

    y_predict=tf.matmul(x,weight)+bias

    # 建立损失函数,均方误差
    loss = tf.reduce\_mean(tf.square(y_true-y_predict))

    # 4.梯度下降,优化损失 learning_rate 0~1,2,3,5,7
    train_op = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    # 定义一个初始化的 op
    init_op=tf.global\_variables\_initializer()

    # 通过会话运行程序
    with tf.Session() as sess:
        # 初始化变量
        sess.run(init_op)
        # 打印随机初始化的权重和偏置
        print("随机初始化的参数权重为: %f 偏置为: %f" % (weight.eval(),bias.eval()))
        # 循环训练 运行优化
        for i in range(200):
            sess.run(train_op)
            print("优化为: %f 偏置为: %f" % (weight.eval(), bias.eval()))
        pass
    return None

if __name__ == '__main__':
    myregre()

版本2:变量作用域
import tensorflow as tf
############ 去除警告
import os
os.environ["TF\_CPP\_MIN\_LOG\_LEVEL"]="2"
def myregre():
    '''
    自定义一个线性回归
    :return:None
    '''
    with tf.variable\_scope("data"):
         # 1.准备数据,x 特征值 (100,1) y 目标值(100)
         x=tf.random\_normal([100,1],mean=1.75,stddev=0.5,name="x\_data")
         # 矩阵相乘必须是二维的
         y_true=tf.matmul(x,[[0.7]])+0.8

    with tf.variable\_scope("model"):
        # 2.建立线性回归模型 1个权重,1个特征,1个偏置 y=x w + b
        # 随机给权重和偏置的,让他计算损失,然后在当前状态下优化
        # 用变量定义才能优化
        weight = tf.Variable(tf.random\_normal([1,1],mean=0.0,stddev=1.0),name="w")
        bias = tf.Variable(0.0,name="b")
        y_predict=tf.matmul(x,weight)+bias
        
    with tf.variable\_scope("loss"):
        # 建立损失函数,均方误差
        loss = tf.reduce\_mean(tf.square(y_true-y_predict))
    with tf.variable\_scope("optimizer"):
        # 4.梯度下降,优化损失 learning_rate 0~1,2,3,5,7
        train_op = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

    # 定义一个初始化的 op
    init_op=tf.global\_variables\_initializer()

    # 通过会话运行程序
    with tf.Session() as sess:
        # 初始化变量
        sess.run(init_op)
        # 打印随机初始化的权重和偏置
        print("随机初始化的参数权重为: %f 偏置为: %f" % (weight.eval(),bias.eval()))
        # 建立事件文件
        filewriter = tf.summary.FileWriter('F:/python/py_tensflow/', graph=sess.graph)

        # 循环训练 运行优化
        for i in range(200):
            sess.run(train_op)
            print("优化为: %f 偏置为: %f" % (weight.eval(), bias.eval()))
        pass
    return None
if __name__ == '__main__':
    myregre()

版本3:增加变量显示
import tensorflow as tf
############ 去除警告
import os
os.environ["TF\_CPP\_MIN\_LOG\_LEVEL"]="2"
def myregre():
    '''
    自定义一个线性回归
    :return:None
    '''
    with tf.variable\_scope("data"):
         # 1.准备数据,x 特征值 (100,1) y 目标值(100)
         x=tf.random\_normal([100,1],mean=1.75,stddev=0.5,name="x\_data")
         # 矩阵相乘必须是二维的
         y_true=tf.matmul(x,[[0.7]])+0.8

    with tf.variable\_scope("model"):
        # 2.建立线性回归模型 1个权重,1个特征,1个偏置 y=x w + b
        # 随机给权重和偏置的,让他计算损失,然后在当前状态下优化
        # 用变量定义才能优化
        weight = tf.Variable(tf.random\_normal([1,1],mean=0.0,stddev=1.0),name="w")
        bias = tf.Variable(0.0,name="b")
        y_predict=tf.matmul(x,weight)+bias

    with tf.variable\_scope("loss"):
        # 建立损失函数,均方误差
        loss = tf.reduce\_mean(tf.square(y_true-y_predict))
    with tf.variable\_scope("optimizer"):
        # 4.梯度下降,优化损失 learning_rate 0~1,2,3,5,7


![img](https://img-blog.csdnimg.cn/img_convert/3355b6e797b1ec53ff2a97b096bcd657.png)
![img](https://img-blog.csdnimg.cn/img_convert/1923a0d829512d263302f964cccb3ca1.png)
![img](https://img-blog.csdnimg.cn/img_convert/397c248230c8e2c429a29d5454524ae7.png)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化的资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**



    with tf.variable\_scope("loss"):
        # 建立损失函数,均方误差
        loss = tf.reduce\_mean(tf.square(y_true-y_predict))
    with tf.variable\_scope("optimizer"):
        # 4.梯度下降,优化损失 learning_rate 0~1,2,3,5,7


[外链图片转存中...(img-3DYGJVx2-1715284787822)]
[外链图片转存中...(img-kYB2nK2t-1715284787822)]
[外链图片转存中...(img-QYZPTfqY-1715284787822)]

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化的资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**

  • 19
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
离散数学思维导图是一个将离散数学的基本概念和主要内容以图示的形式展示出来的学习工具。它可以帮助学习者更好地理解离散数学的知识结构和逻辑关系。 离散数学思维导图包括以下几个主要部分: 1. 集合论:包括集合的定义、运算和性质等。集合论是离散数学的基础,思维导图可以清晰地展示出集合之间的运算和关系。 2. 逻辑与命题:展示命题的逻辑关系,包括命题的否定、合取、析取、蕴含和等价等。思维导图可以帮助学习者更好地理解命题之间的逻辑运算。 3. 图论:展示图的基本概念和性质,包括顶点、边、路径、回路、连通性等。思维导图可以清晰地呈现图的结构和关系,便于学习者分析和解决与图相关的问题。 4. 代数结构:包括代数系统、群、环、域等。思维导图可以帮助学习者理解代数结构的定义和性质,并将它们之间的关系进行整合和总结。 5. 组合数学:包括组合问题的计数原理、排列组合、图的着色等。思维导图能够清晰地展示组合问题的解决步骤和方法,便于学习者掌握。 通过离散数学思维导图,学习者可以更清晰地了解离散数学的基本概念和思维方式,更加系统地学习和掌握离散数学的知识,提高解决问题的能力和思维能力。同时,思维导图也可以作为一个复习工具,帮助学习者回顾离散数学的重要内容,加深记忆。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值