时间复杂度主要衡量一个算法运行的快慢,而空间复杂度主要衡量一个算法运行所需的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度,所以我们现在也不用太关心空间复杂度。
时间复杂度
时间复杂度的概念
时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上来说,是不能算出来的,只有你把你的程序放到机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?这样的话岂不是很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比,算法中的基本操作的执行次数,为算法的时间复杂度。
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。
void Func1(int N) { int count = 0; for (int i = 0; i < N; ++i) { for (int j = 0; j < N; ++j) { ++count; } } for (int k = 0; k < 2 \* N; ++k) { ++count; } int M = 10; while (M--) { ++count; } }
操作次数为:
- N = 10 F(N) = 130
- N = 100 F(N) = 10210
- N = 1000 F(N) = 1002010
实际上我们计算时间复杂度的时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,这里用大O的渐进表示法
大O的渐进表示法
大O符号:是用于描述函数渐进行为的数学符号。
推导大O阶方法:
- 用常数1取代运行时间中的所有加法常数。
- 在修改后的运行次数函数中,只保留最高阶
- 如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
通过上面我们会发现大O阶的渐进表示去掉了那些对结果影响不大的项,简介明了的表示出了执行次数。另外还有些算法的时间复杂度存在最好、平均、最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
在实际中一般情况下关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)
常见的时间复杂度计算举例
实例1:
// 计算Func2的时间复杂度? void Func2(int N) { int count = 0; for (int k = 0; k < 2 \* N; ++k) { ++count; } int M = 10; while (M--) { ++count; } printf("%d\n", count); }
时间复杂度为:O(N)
实例2:
// 计算Func3的时间复杂度? void Func3(int N, int M) { int count = 0; for (int k = 0; k < M; ++k) { ++count; } for (int k = 0; k < N; ++k) { ++count; } printf("%d\n", count); }
时间复杂度为:O(N+M)
实例3:
// 计算Func4的时间复杂度? void Func4(int N) { int count = 0; for (int k = 0; k < 100; ++k) { ++count; } printf("%d\n", count); }
时间复杂度为:O(1)
实例4:
// 计算strchr的时间复杂度? const char \* strchr ( const char \* str, int character );
这个函数我们之前没见过,具体功能如下:
所以时间复杂度为:O(1)
实例5:
// 计算BubbleSort的时间复杂度? void BubbleSort(int\* a, int n) { assert(a); for (size\_t end = n; end > 0; --end) { int exchange = 0; for (size\_t i = 1; i < end; ++i) { if (a[i - 1] > a[i]) { Swap(&a[i - 1], &a[i]); exchange = 1; } } if (exchange == 0) break; } }
可以看到这是一个等差数列:最后的时间复杂度为O(N^2)
实例6:
// 计算BinarySearch的时间复杂度? int BinarySearch(int\* a, int n, int x) { assert(a); int begin = 0; int end = n - 1; // [begin, end]:begin和end是左闭右闭区间,因此有=号 while (begin <= end) { int mid = begin + ((end - begin) >> 1); if (a[mid] < x) begin = mid + 1; else if (a[mid] > x) end = mid - 1; else return mid; } return -1; }
时间复杂度是以2为低N的对数(经常允许写成O(logN)
实例7:
// 计算阶乘递归Fac的时间复杂度? long long Fac(size\_t N) { if (0 == N) return 1; return Fac(N - 1) \* N; }
时间复杂度是O(N)
实例8:
// 计算斐波那契递归Fib的时间复杂度? long long Fib(size\_t N) { if (N < 3) return 1; return Fib(N - 1) + Fib(N - 2); }
实例9:
// 计算斐波那契递归Fib的时间复杂度 long long Fib(size\_t N) { if(N < 3) { return 1; } return FibK(N - 1) + Fib(N - 2); }
所以时间复杂度为2^N
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
中…(img-Nq38gZX6-1714273843823)]
[外链图片转存中…(img-j3ZEqrDj-1714273843823)]
[外链图片转存中…(img-7q27zFjc-1714273843824)]
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新