Elasticsearch8,推荐给大家


本地图片矢量计算



def get_image_features(image):
model = CLIPModel.from_pretrained(“openai/clip-vit-base-patch32”)
processor = CLIPProcessor.from_pretrained(“openai/clip-vit-base-patch32”)
inputs = processor(images=images, return_tensors=“pt”)
image_features = self.model.get_image_features(**inputs)
image_features /= image_features.norm(dim=-1, keepdim=True)
image_features = image_features.tolist()
return image_features


创建ES索引,这里向量索引定义为 `index_image_search`,`"dims":512` 表示字段的向量维度为512,`"similarity":"l2_norm"` 表示使用 L2 范数作为相似度计算的方法,L2 范数也被称为`欧氏距离`



“mappings”: {
“properties”: {
“feature_vector”: {
“type”: “dense_vector”,
“dims”: 512,
“similarity”: “l2_norm”
},
“image_path”: {
“type”: “keyword”,
}
}
}


组装ES文档和向量数据,批量插入到 ES



from elasticsearch.helpers import bulk
#循环迭代图片集合
def define_data():
dataloader = DataLoader(ImageDataset(), batch_size=64)
for batch in tqdm(dataloader):
image_ids, image_urls, images = batch
image_features = get_image_features(images)
batch_size = len(image_ids)
for i in range(batch_size):
yield {
“_index”: “index_image_search”,
“_id”: image_ids[i],
“image_path”: image_urls[i],
“feature_vector”: image_features[i],
}

批量插入

def bulk_ingest(self, chunk_size=128):
return bulk(self.client, generate_data(), chunk_size=chunk_size, ignore_status=500)


至此以上步骤完成了对素材图片的向量化存储,接下来我们将启动一个python web页面来演示图片搜索功能


###### Streamlit 构建 Web 搜索页面


为了展示构建的搜索引擎,我们将使用 Streamlit 框架构建一个简单而强大的 Web 搜索页面,[Streamlit]( ) 的简洁性和实时性使得构建交互式搜索界面变得非常容易


案例中页面表单元素组件主要包括:


* [搜索类型(文搜图/图搜图)]( )
* [向量模型]( )
* [搜索数量]( )
* [搜索文本或图片地址]( )  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/f0a22676f36d4068ac4592dd215a0673.png)


#### 总结


使用过程中我们发现**clip-vit-base-patch32**模型对部分中文的支持效果不是很好,所以我们引入了**clip-ViT-B-32-multilingual-v1**模型,实践下来它对中文的识别效果还是不错的,毕竟其具备支持多语言文本的解析能力。当然,如果场景中只用到英文来搜索,那么clip-vit-base-patch32模型足够了


其它语言模型可在官网搜索下载:[Hugging Face]( )


#### 案例展示


下面给出几组搜索对比结果图:



> 
> Model:ViT-B-32-Multi/ViT-B-32  
>  搜索词:不见啄木鸟,但闻啄木声
> 
> 
> 


![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/ab44d01506ef4125a056d237df380549.png#pic_left)


![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/faee201dd36e4803ae888c6a1f6d457e.png#pic_left)



> 
> Model:ViT-B-32-Multi/ViT-B-32  
>  搜索词:two cute little pigs
> 
> 
> 


![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/82129505450e4c2d9609fa8dab714ce0.png#pic_left)  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/776998dfa05f458e837802075a1ab193.png#pic_left)



> 
> Model:ViT-B-32-Multi/ViT-B-32  
>  搜索词:かわいい2匹の子豚
> 
> 
> 


![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/2f4956c62a574fde8115e5aea91b3156.png#pic_left)



> 
> 图片搜索
> 
> 
> 


![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/2874122796ea4274b5e00f0d12d3423d.png#pic_left)  


**自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。**

**深知大多数大数据工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!**

**因此收集整理了一份《2024年大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。**
![img](https://img-blog.csdnimg.cn/img_convert/447168f9a57a45fab40267cbccb62a1a.png)
![img](https://img-blog.csdnimg.cn/img_convert/9f5f0d7cd5ade1564157b5510f595af0.png)
![img](https://img-blog.csdnimg.cn/img_convert/144a27e55268301d591bd7d634125f4e.png)
![img](https://img-blog.csdnimg.cn/img_convert/24ea6a6494c6324302d5d6acb77204e3.png)
![img](https://img-blog.csdnimg.cn/img_convert/faf31c9dfbb0dbb450551ddc83cfab2b.png)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!**

**由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新**

**如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)**
![img](https://img-blog.csdnimg.cn/img_convert/c058f8d6f1c6fbe17eb3adcb735ec5a9.png)

**一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

204888 (备注大数据获取)**
[外链图片转存中...(img-aQMGUWSp-1712958397448)]

**一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值