clip安装使用教程(24-7-11更新,包括虚拟环境下的安装和使用)

本文介绍了如何在Python环境中配置必要的依赖,如pip安装transformers和torch,以及如何安装和使用CLIP模型进行图像文本相似度计算。作者详细描述了解压和安装过程,并处理了遇到的常见错误,如加载tokenizer问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.配置环境 安装依赖

pip install transformers
pip install torch

看缺失什么包自己先安装好

2.安装clip

进入https://github.com/openai/CLIP,先将CLIP文件夹下载到本地,随便什么位置。即点击下图中的Download ZIP,下载到本地后进行解压,即得到文件夹CLIP-main,保存位置没有讲究。

最后在cmd下切换到你保存上述文件夹的位置,cd进入文件夹CLIP-main,然后输入

python install .

注:使用python setup.py install 会报错 ....setup.py install is deprecated....

注:如果你的代码在虚拟环境下的话,就必须在虚拟环境下安装clip

虚拟环境下安装clip的具体步骤:打开Anaconda,激活虚拟环境,在虚拟环境下进入文件夹CLIP-main,然后再输入pip install .进行clip包的安装。

注:本来是想clone下来,但报错error:subprocess-exited-with-error,采用以上方法解决

接着进入https://huggingface.co/models,选择自己要用的模型,我这里用的是clip-vit-base-patch32

下载这些文件,将它们放在你手动创建的openai/clip-vit-base-patch32文件夹中

注:刚开始直接运行代码报错,Can't load tokenizer for 'openai/clip-vit-base-patch32'. If you were trying to load it from 'https://huggingface.co/models', make sure you don't have a local directory with the same name. 依靠上述方法解决,类似的报错都可以依靠上述方法解决,直接下载本地文件然后放入对应的文件夹就行

3.运行代码

import torch
import clip
from PIL import Image

device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)

image = preprocess(Image.open("temp.jpg")).unsqueeze(0).to(device)
text = clip.tokenize(["a diagram", "a dog", "a cat"]).to(device)

with torch.no_grad():
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)

    logits_per_image, logits_per_text = model(image, text)
    probs = logits_per_image.softmax(dim=-1).cpu().numpy()

print("Label probs:", probs)  

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值