既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
flink-conf.yaml
注册监听
org.apache.flink.configuration.ExecutionOptions
添加配置属性
public static final ConfigOption<List<String>> JOB_LISTENERS =
ConfigOptions.key("execution.atlas.job-listeners")
.stringType()
.asList()
.noDefaultValue()
.withDescription("JobListenerFactories to be registered for the execution.");
一点说明:官方Flink1.12.0 版本之后支持配置execution.job-listeners
,因此自己添加了个配置属性execution.atlas.job-listeners
进行区分,
org.apache.flink.configuration.DeploymentOptions
任务提交
flink run -m yarn-cluster -ys 1 -yjm 1024 -ytm 1024 -c com.nufront.bigdata.v2x.test.AtlasTest /opt/v2x-1.0-SNAPSHOT.jar
测试任务
public class AtlasTest {
public static void main(String[] args) throws Exception {
//TODO 1.获取执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
env.disableOperatorChaining();
// TODO kafka消费
// 配置 kafka 输入流信息
Properties consumerprops = new Properties();
consumerprops.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "10.0.2.67:9092");
consumerprops.put(ConsumerConfig.GROUP_ID_CONFIG, "group1");
consumerprops.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
consumerprops.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "latest");
consumerprops.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
consumerprops.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
// 添加 kafka 数据源
DataStreamSource<String> dataStreamSource = env.addSource(new FlinkKafkaConsumer<>("atlas-source-topic", new SimpleStringSchema(), consumerprops));
// 配置kafka输入流信息
Properties producerprops = new Properties();
producerprops.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "10.0.2.67:9092");
// 配置证书信息
dataStreamSource.addSink(new FlinkKafkaProducer<String>("atlas-sink-topic", new KeyedSerializationSchemaWrapper(new SerializationSchema<String>(){
@Override
public byte[] serialize(String element) {
return element.getBytes();
}
}), producerprops));
env.execute("AtlasTest");
}
}
flink on yarn 日志输出
修改 json 解析方式
org.apache.atlas.utils.AtlasJson#toJson
public static String toJson(Object obj) {
String ret;
if (obj instanceof JsonNode && ((JsonNode) obj).isTextual()) {
ret = ((JsonNode) obj).textValue();
} else {
// 修改 json 处理方式:fastjson,原来的ObjectMapper.writeValueAsString() 一度卡住不往下执行
// ret = mapper.writeValueAsString(obj);
ret = JSONObject.toJSONString(JSONObject.toJSON(obj));
LOG.info(ret);
}
return ret;
}
查看目标 kafka 对应topic
flinksql
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
bs.csdn.net/topics/618545628)**
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!