2024年DirectX12(D3D12)基础教程(十七)—,看完这篇彻底明白了

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

x

n

y

(

1

c

o

s

(

θ

)

)

n

z

s

i

n

(

θ

)

n

x

n

z

(

1

c

o

s

(

θ

)

)

n

y

s

i

n

(

θ

)

n

x

n

y

(

1

c

o

s

(

θ

)

)

n

z

s

i

n

(

θ

)

n

y

2

(

1

c

o

s

(

θ

)

)

c

o

s

(

θ

)

n

y

n

z

(

1

c

o

s

(

θ

)

)

n

x

s

i

n

(

θ

)

n

x

n

z

(

1

c

o

s

(

θ

)

)

n

y

s

i

n

(

θ

)

n

y

n

z

(

1

c

o

s

(

θ

)

)

n

x

s

i

n

(

θ

)

n

z

2

(

1

c

o

s

(

θ

)

)

c

o

s

(

θ

)

]

\mathbb{M}_{(\vec{n},\theta)} = \begin{bmatrix} & \vec{n}_{x}^{2}(1-cos(\theta)) + cos(\theta) & \vec{n}_x\vec{n}_y(1-cos(\theta)) + \vec{n}_z sin(\theta) & \vec{n}_x \vec{n}_z(1-cos(\theta)) - \vec{n}_y sin(\theta) \ & \vec{n}_x \vec{n}_y (1-cos(\theta)) - \vec{n}_z sin(\theta) & \vec{n}_y^2 (1- cos(\theta)) + cos(\theta) & \vec{n}_y \vec{n}_z (1-cos(\theta)) + \vec{n}_x sin(\theta) \ & \vec{n}_x \vec{n}_z (1-cos(\theta)) + \vec{n}_y sin(\theta) & \vec{n}_y \vec{n}_z (1-cos(\theta)) - \vec{n}_x sin(\theta) & \vec{n}_z^2 (1-cos(\theta)) + cos(\theta) \end{bmatrix}

M(n

,θ)​=⎣⎡​​n

x2​(1−cos(θ))+cos(θ)n

x​n

y​(1−cos(θ))−n

z​sin(θ)n

x​n

z​(1−cos(θ))+n

y​sin(θ)​n

x​n

y​(1−cos(θ))+n

z​sin(θ)n

y2​(1−cos(θ))+cos(θ)n

y​n

z​(1−cos(θ))−n

x​sin(θ)​n

x​n

z​(1−cos(θ))−n

y​sin(θ)n

y​n

z​(1−cos(θ))+n

x​sin(θ)n

z2​(1−cos(θ))+cos(θ)​⎦⎤​
  上面公式的推导我们就先不细究了,不论这个公式最终表达的是什么,但我相信看到它你一定能够求出你的心理阴影面积!

因此,如果直接使用这个公式,不论对于美工、程序还是纯数学公式推导的各位来说,都将是一个噩梦般的过程。不过幸运的是,有一位名叫"哈密顿"爱尔兰数学家,为我们发明了好用且直观的“四元数”来应对这一较复杂的局面。

9.1、四元数

四元数最初的灵感来源于我们熟悉的复数,或者说四元数就是基于平面的复数的3维空间扩展形式。在平面上,建立了坐标系后,复数的乘法不但可以表示一般数的倍数关系,而且还“内蕴”了平面上的线段旋转变换。作为复数在3维空间的推广形式,同样的四元数的乘法也“内蕴”了3维空间的旋转变换。如果将四元数像复数那样“单位”化,那么单位四元数就完全可以只表达我们需要的旋转变换,而且天然就是表示围绕某个轴的旋转(称为“方位”),且只需要四个分量即可表达。

一般的,四元素定义如下:

q

=

w

x

i

y

j

z

k

i

,

j

,

k

i

2

=

j

2

=

k

2

=

1

i

j

=

j

i

=

k

j

k

=

k

j

=

i

k

i

=

i

j

=

j

\mathbb{q} = w + xi+yj+zk \[2ex] 其中i,j,k满足如下运算规律: \[2ex] i^2 = j^2 = k^2 = -1 \[2ex] ij = -ji = k \[2ex] jk = -kj = i \[2ex] ki = -ij = j

q=w+xi+yj+zk其中i,j,k满足如下运算规律:i2=j2=k2=−1ij=−ji=kjk=−kj=iki=−ij=j
  这样四元数也可以被看做是一个实部+三个虚部的数,并且可以改写为:

q

=

r

v

v

=

x

i

y

j

z

k

\mathbb{q}=r+\vec{v} \[2ex] 定义:\vec{v} = xi+yj+zk

q=r+v

定义:v

=xi+yj+zk
  注意其中x,y,z,w的定义方式,其实这也正是我们在计算机程序中用XMFLOAT4表示四元数元素的顺序,也是我们在Shader中表示四元数的顺序。即最后一个分量w代表四元数的实部。关于四元数的其它相关知识大家可以去搜资料复习一下,这里就不多费篇幅了,重点放在四元数的使用上。

首先我们回到刚才的问题,即具体的我们如何用四元数来表示绕任意轴的旋转呢?

n

θ

q

=

[

c

o

s

(

θ

2

)

,

n

x

s

i

n

(

θ

2

)

,

n

y

s

i

n

(

θ

2

)

,

n

z

s

i

n

(

θ

2

)

]

=

[

c

o

s

(

θ

2

)

,

s

i

n

(

θ

2

)

n

]

假设要旋转的轴为 \ \vec{n} \ ,并且是归一化的单位向量,同时绕该轴的旋转为 \theta , 那么用四元数可以表达这一旋转如下: \[2ex] \mathbb{q}=[ cos(\frac{\theta}{2}),\ \vec{n}_x sin(\frac{\theta}{2}),\ \vec{n}_y sin(\frac{\theta}{2}),\ \vec{n}_z sin(\frac{\theta}{2}) ] \[2ex] = [ cos(\frac{\theta}{2}),\ sin(\frac{\theta}{2})\vec{n}]

假设要旋转的轴为 n

,并且是归一化的单位向量,同时绕该轴的旋转为θ,那么用四元数可以表达这一旋转如下:q=[cos(2θ​), n

x​sin(2θ​), n

y​sin(2θ​), n

z​sin(2θ​)]=[cos(2θ​), sin(2θ​)n

]
  这样,一个围绕轴

n

θ

\vec{n}的\theta

n

的θ角度的旋转就被简单且直观的表达出来了。注意这里的四元数是个单位四元数,其“模”等于1。

其次,这样表达之后有什么好处呢?

1、因为这样的四元数都是单位四元数,所以连乘后结果依然保持“模”为1的单位归一性。

2、当将一般的3D向量表示为实部为0的四元数时

v

=

[

0

,

(

x

,

y

,

z

)

]

\vec{v}=[0,(x,y,z)]

v

=[0,(x,y,z)]时,用单位四元数旋转该向量可以简单的表示为:

q

=

q

=

[

c

o

s

(

θ

2

)

,

n

x

s

i

n

(

θ

2

)

,

n

y

s

i

n

(

θ

2

)

,

n

z

s

i

n

(

θ

2

)

]

v

=

q

v

q

1

q

1

=

q

q

q

=

(

r

v

)

=

(

r

v

)

=

[

w

x

i

y

i

z

i

]

q

=

1

q

1

=

[

c

o

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

,

(

x

,

y

,

z

)

]

\vec{v}=[0,(x,y,z)]

v

=[0,(x,y,z)]时,用单位四元数旋转该向量可以简单的表示为:

q

=

q

=

[

c

o

s

(

θ

2

)

,

n

x

s

i

n

(

θ

2

)

,

n

y

s

i

n

(

θ

2

)

,

n

z

s

i

n

(

θ

2

)

]

v

=

q

v

q

1

q

1

=

q

q

q

=

(

r

v

)

=

(

r

v

)

=

[

w

x

i

y

i

z

i

]

q

=

1

q

1

=

[

c

o

[外链图片转存中…(img-HCfSPQ6M-1715226586827)]
[外链图片转存中…(img-6amqZkC3-1715226586827)]
[外链图片转存中…(img-0Rmuj9FD-1715226586827)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

  • 4
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值