2024年大数据最全DirectX12(D3D12)基础教程(十七)—,2024年最新一年后斩获腾讯T3

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

1、必须要了解这里变换的真实含义。其实这里的变换即指线性代数意义上的变换,也指动画效果意义上的变换,最终在数学、程序、美工三者之间,达成了一种近乎完美的一致,那就是变换被定义或表达为三种基本变换的复合:缩放、旋转、位移。这三种变换无论在数学推导上,还是在程序表达上,还是在美工建模上都具有简单性、易理解性、易表达性!至于为什么是这三种基本变换,大家可以去复习下3D数学的相关基础知识即可明白,本文就不赘述了。

2、对于骨骼的一组完整的变换,比如人体走动的动作中的大腿与小腿间的关节的变换,往往不可能在一帧中就变换完毕,否则这个动作就会因为缺乏中间过程而显得“异常生硬”。所以这些完整变换过程,往往被按照一定的时间间隔切分为一组连续的变换数组,而被切分的每一个时刻点的一组变换数据就被称为骨骼动画的一个“关键帧(Keyframes)”(大多数情况下关键帧是指所有关节点在同一时间点的全部变换)。一般情况下关键帧都是按照均匀的时间间隔做切分的。在Assimp中就将这些针对每一个关节的关键帧数组都统一存储在aiScene对象中aiAnimation对象的aiNodeAnim子对象数组中。

struct aiScene
{
//......
    /\*\* The number of animations in the scene. \*/
    unsigned int mNumAnimations;

    /\*\* The array of animations.
 \*
 \* All animations imported from the given file are listed here.
 \* The array is mNumAnimations in size.
 \*/
    C_STRUCT aiAnimation\*\* mAnimations;
//......
};

struct aiAnimation {
    /\*\* The name of the animation. If the modeling package this data was
 \* exported from does support only a single animation channel, this
 \* name is usually empty (length is zero). \*/
    C_STRUCT aiString mName;

    /\*\* Duration of the animation in ticks. \*/
    double mDuration;

    /\*\* Ticks per second. 0 if not specified in the imported file \*/
    double mTicksPerSecond;

    /\*\* The number of bone animation channels. Each channel affects
 \* a single node. \*/
    unsigned int mNumChannels;

    /\*\* The node animation channels. Each channel affects a single node.
 \* The array is mNumChannels in size. \*/
    C_STRUCT aiNodeAnim\*\* mChannels;
//......
}

struct aiNodeAnim {
    /\*\* The name of the node affected by this animation. The node
 \* must exist and it must be unique.\*/
    C_STRUCT aiString mNodeName;

    /\*\* The number of position keys \*/
    unsigned int mNumPositionKeys;

    /\*\* The position keys of this animation channel. Positions are
 \* specified as 3D vector. The array is mNumPositionKeys in size.
 \*
 \* If there are position keys, there will also be at least one
 \* scaling and one rotation key.\*/
    C_STRUCT aiVectorKey\* mPositionKeys;

    /\*\* The number of rotation keys \*/
    unsigned int mNumRotationKeys;

    /\*\* The rotation keys of this animation channel. Rotations are
 \* given as quaternions, which are 4D vectors. The array is
 \* mNumRotationKeys in size.
 \*
 \* If there are rotation keys, there will also be at least one
 \* scaling and one position key. \*/
    C_STRUCT aiQuatKey\* mRotationKeys;

    /\*\* The number of scaling keys \*/
    unsigned int mNumScalingKeys;

    /\*\* The scaling keys of this animation channel. Scalings are
 \* specified as 3D vector. The array is mNumScalingKeys in size.
 \*
 \* If there are scaling keys, there will also be at least one
 \* position and one rotation key.\*/
    C_STRUCT aiVectorKey\* mScalingKeys;
//......
};

3、最终变换的目的是,用关键帧中某一个时刻点的基本变换(缩放、旋转、位移)计算后得到的复合矩阵,去替换骨架中的每个“逆位姿绑定矩阵”。实际中,其实就是替换之前在骨骼绑定中存储的那个“逆位姿绑定矩阵”数组中对应的元素。

struct ST\_GRS\_BONE\_DATA
{
	XMMATRIX m_mxBoneOffset;
	XMMATRIX m_mxFinalTransformation;
};

typedef CAtlArray<ST_GRS_BONE_DATA> CGRSARBoneDatas;

struct ST\_GRS\_MESH\_DATA
{
//......
	CGRSARBoneDatas		m_arBoneDatas;
//......
};

9、四元数和SQT组合变换

在了解了骨骼动画的关键帧之后,那么最后的一个问题就是说,这些基础变换:缩放、旋转、位移具体在程序中要怎么表达了。

通常这些变换操作,如果学过3D数学的话,基本都可以迅速的用固定的公式代入参数迅速得到。但是等等,不要过渡兴奋先,好好想想这里的旋转究竟表示的是什么意思?其实关节处的旋转往往不是简单的围绕坐标轴的“规则”旋转,虽然如前所述,我们为了方便几乎可以随心所欲的指定局部坐标系,但实质上还是会有一些旋转不是轴对齐的旋转,因而就不能用简单的绕某个轴旋转的矩阵来表达。

在真实3D空间中,物体的任何单一旋转运动往往可以表达为绕“任意轴”旋转一定角度,而经过“复杂”的(其实就是不“直观”)或不易“理解”的数学推导过程后,绕任意轴旋转的矩阵公式如下:

M

(

n

,

θ

)

=

[

n

x

2

(

1

c

o

s

(

θ

)

)

c

o

s

(

θ

)

n

x

n

y

(

1

c

o

s

(

θ

)

)

n

z

s

i

n

(

θ

)

n

x

n

z

(

1

c

o

s

(

θ

)

)

n

y

s

i

n

(

θ

)

n

x

n

y

(

1

c

o

s

(

θ

)

)

n

z

s

i

n

(

θ

)

n

y

2

(

1

c

o

s

(

θ

)

)

c

o

s

(

θ

)

n

y

n

z

(

1

c

o

s

(

θ

)

)

n

x

s

i

n

(

θ

)

n

x

n

z

(

1

c

o

s

(

θ

)

)

n

y

s

i

n

(

θ

)

n

y

n

z

(

1

c

o

s

(

θ

)

)

n

x

s

i

n

(

θ

)

n

z

2

(

1

c

o

s

(

θ

)

)

c

o

s

(

θ

)

]

\mathbb{M}_{(\vec{n},\theta)} = \begin{bmatrix} & \vec{n}_{x}^{2}(1-cos(\theta)) + cos(\theta) & \vec{n}_x\vec{n}_y(1-cos(\theta)) + \vec{n}_z sin(\theta) & \vec{n}_x \vec{n}_z(1-cos(\theta)) - \vec{n}_y sin(\theta) \ & \vec{n}_x \vec{n}_y (1-cos(\theta)) - \vec{n}_z sin(\theta) & \vec{n}_y^2 (1- cos(\theta)) + cos(\theta) & \vec{n}_y \vec{n}_z (1-cos(\theta)) + \vec{n}_x sin(\theta) \ & \vec{n}_x \vec{n}_z (1-cos(\theta)) + \vec{n}_y sin(\theta) & \vec{n}_y \vec{n}_z (1-cos(\theta)) - \vec{n}_x sin(\theta) & \vec{n}_z^2 (1-cos(\theta)) + cos(\theta) \end{bmatrix}

M(n

,θ)​=⎣⎡​​n

x2​(1−cos(θ))+cos(θ)n

x​n

y​(1−cos(θ))−n

z​sin(θ)n

x​n

z​(1−cos(θ))+n

y​sin(θ)​n

x​n

y​(1−cos(θ))+n

z​sin(θ)n

y2​(1−cos(θ))+cos(θ)n

y​n

z​(1−cos(θ))−n

x​sin(θ)​n

x​n

z​(1−cos(θ))−n

y​sin(θ)n

y​n

z​(1−cos(θ))+n

x​sin(θ)n

z2​(1−cos(θ))+cos(θ)​⎦⎤​
  上面公式的推导我们就先不细究了,不论这个公式最终表达的是什么,但我相信看到它你一定能够求出你的心理阴影面积!

因此,如果直接使用这个公式,不论对于美工、程序还是纯数学公式推导的各位来说,都将是一个噩梦般的过程。不过幸运的是,有一位名叫"哈密顿"爱尔兰数学家,为我们发明了好用且直观的“四元数”来应对这一较复杂的局面。

9.1、四元数

四元数最初的灵感来源于我们熟悉的复数,或者说四元数就是基于平面的复数的3维空间扩展形式。在平面上,建立了坐标系后,复数的乘法不但可以表示一般数的倍数关系,而且还“内蕴”了平面上的线段旋转变换。作为复数在3维空间的推广形式,同样的四元数的乘法也“内蕴”了3维空间的旋转变换。如果将四元数像复数那样“单位”化,那么单位四元数就完全可以只表达我们需要的旋转变换,而且天然就是表示围绕某个轴的旋转(称为“方位”),且只需要四个分量即可表达。

一般的,四元素定义如下:

q

=

w

x

i

y

j

z

k

i

,

j

,

k

i

2

=

j

2

=

k

2

=

1

i

j

=

j

i

=

k

j

k

=

k

j

=

i

k

i

=

i

j

=

j

\mathbb{q} = w + xi+yj+zk \[2ex] 其中i,j,k满足如下运算规律: \[2ex] i^2 = j^2 = k^2 = -1 \[2ex] ij = -ji = k \[2ex] jk = -kj = i \[2ex] ki = -ij = j

q=w+xi+yj+zk其中i,j,k满足如下运算规律:i2=j2=k2=−1ij=−ji=kjk=−kj=iki=−ij=j
  这样四元数也可以被看做是一个实部+三个虚部的数,并且可以改写为:

q

=

r

v

v

=

x

i

y

j

z

k

\mathbb{q}=r+\vec{v} \[2ex] 定义:\vec{v} = xi+yj+zk

q=r+v

定义:v

=xi+yj+zk
  注意其中x,y,z,w的定义方式,其实这也正是我们在计算机程序中用XMFLOAT4表示四元数元素的顺序,也是我们在Shader中表示四元数的顺序。即最后一个分量w代表四元数的实部。关于四元数的其它相关知识大家可以去搜资料复习一下,这里就不多费篇幅了,重点放在四元数的使用上。

首先我们回到刚才的问题,即具体的我们如何用四元数来表示绕任意轴的旋转呢?

n

θ

q

=

[

c

o

s

(

θ

2

)

,

n

x

s

i

n

(

θ

2

)

,

n

y

s

i

n

(

θ

2

)

,

n

z

s

i

n

(

θ

2

)

]

=

[

c

o

s

(

θ

2

)

,

s

i

n

(

θ

2

)

n

]

假设要旋转的轴为 \ \vec{n} \ ,并且是归一化的单位向量,同时绕该轴的旋转为 \theta , 那么用四元数可以表达这一旋转如下: \[2ex] \mathbb{q}=[ cos(\frac{\theta}{2}),\ \vec{n}_x sin(\frac{\theta}{2}),\ \vec{n}_y sin(\frac{\theta}{2}),\ \vec{n}_z sin(\frac{\theta}{2}) ] \[2ex] = [ cos(\frac{\theta}{2}),\ sin(\frac{\theta}{2})\vec{n}]

假设要旋转的轴为 n

,并且是归一化的单位向量,同时绕该轴的旋转为θ,那么用四元数可以表达这一旋转如下:q=[cos(2θ​), n

x​sin(2θ​), n

y​sin(2θ​), n

z​sin(2θ​)]=[cos(2θ​), sin(2θ​)n

]
  这样,一个围绕轴

n

θ

\vec{n}的\theta

n

的θ角度的旋转就被简单且直观的表达出来了。注意这里的四元数是个单位四元数,其“模”等于1。

其次,这样表达之后有什么好处呢?

1、因为这样的四元数都是单位四元数,所以连乘后结果依然保持“模”为1的单位归一性。

2、当将一般的3D向量表示为实部为0的四元数时

v

=

[

0

,

(

x

,

y

,

z

)

]

\vec{v}=[0,(x,y,z)]

v

=[0,(x,y,z)]时,用单位四元数旋转该向量可以简单的表示为:

q

=

q

=

[

c

o

s

(

θ

2

)

,

n

x

s

i

n

(

θ

2

)

,

n

y

s

i

n

(

θ

2

)

,

n

z

s

i

n

(

θ

2

)

]

v

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

i

n

(

θ

2

)

n

]

假设要旋转的轴为 \ \vec{n} \ ,并且是归一化的单位向量,同时绕该轴的旋转为 \theta , 那么用四元数可以表达这一旋转如下: \[2ex] \mathbb{q}=[ cos(\frac{\theta}{2}),\ \vec{n}_x sin(\frac{\theta}{2}),\ \vec{n}_y sin(\frac{\theta}{2}),\ \vec{n}_z sin(\frac{\theta}{2}) ] \[2ex] = [ cos(\frac{\theta}{2}),\ sin(\frac{\theta}{2})\vec{n}]

假设要旋转的轴为 n

,并且是归一化的单位向量,同时绕该轴的旋转为θ,那么用四元数可以表达这一旋转如下:q=[cos(2θ​), n

x​sin(2θ​), n

y​sin(2θ​), n

z​sin(2θ​)]=[cos(2θ​), sin(2θ​)n

]
  这样,一个围绕轴

n

θ

\vec{n}的\theta

n

的θ角度的旋转就被简单且直观的表达出来了。注意这里的四元数是个单位四元数,其“模”等于1。

其次,这样表达之后有什么好处呢?

1、因为这样的四元数都是单位四元数,所以连乘后结果依然保持“模”为1的单位归一性。

2、当将一般的3D向量表示为实部为0的四元数时

v

=

[

0

,

(

x

,

y

,

z

)

]

\vec{v}=[0,(x,y,z)]

v

=[0,(x,y,z)]时,用单位四元数旋转该向量可以简单的表示为:

q

=

q

=

[

c

o

s

(

θ

2

)

,

n

x

s

i

n

(

θ

2

)

,

n

y

s

i

n

(

θ

2

)

,

n

z

s

i

n

(

θ

2

)

]

v

[外链图片转存中…(img-j68czkLJ-1714861285224)]
[外链图片转存中…(img-JXUfNddB-1714861285224)]

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 26
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值