如图2中(b)的降维版本解决了这一问题,在计算3x3和5x5的卷积之前,使用1x1的卷积层来降维。
虽然可以使用1x1的卷积层来降低维度,但是使用更大的卷积核来进行卷积也是相当耗时的,因此Inception模块可以进一步简化为下图所示的结构使用两个3x3的卷积来代替一个5x5的卷积。
另外还使用了多个3x3的卷积来代替7x7的卷积,如下图所示:
整个MulitResUnet的网络结构如下图所示:
DC-UNet
动机:MultiResUNet可以提供比U-Net更好的输出,因为它可以提供不同尺度的特征。然而,对于一些极具挑战性的医学图像情况,MultiResUNet表现不佳,例如物体模糊,背景(部分医疗设备)的干扰。MultiRes块的目标是提供不同尺度的特征来帮助将物体从整个图像中分离出来。因此,我们修改了MultiRes块以提供更有效的