MultiResUNet
在医学图像中,感兴趣的目标对象常常有所不同,因此为了更好的分割结果,网络需要具备在不同的尺度上分析不同目标的能力。基于这一思想,Szegedy[27]引入了一种革命性的架构——Inception Block。该初始块利用不同内核大小的卷积层并行从图像中提取不同尺度的特征。初始块如图2所示。在最初的版本中,初始块简单地将1 × 1,3 × 3,5 × 5卷积层和3 × 3最大池化层并行组合。然后,将不同尺度的特征进行拼接,发送到下一层。然而,这个版本的一个大问题是维数会导致计算爆炸
如图2中(b)的降维版本解决了这一问题,在计算3x3和5x5的卷积之前,使用1x1的卷积层来降维。
虽然可以使用1x1的卷积层来降低维度,但是使用更大的卷积核来进行卷积也是相当耗时的,因此Inception模块可以进一步简化为下图所示的结构使用两个3x3的卷积来代替一个5x5的卷积。
另外还使用了多个3x3的卷积来代替7x7的卷积,如下图所示:
整个MulitResUnet的网络结构如下图所示: