银行数据仓库的架构(1),2024大数据开发开发面试解答之设计模式篇

本文探讨了数据仓库在银行领域的应用,详细介绍了数据仓库的分层原则和结构,包括ODS、DW(DWD、DWM、DWS)、APP和维表层。此外,还提到了数据仓库的用途,如整合业务数据、生成报表和提供运营支持。重点讨论了金融主题的划分,如Teradata的FS-LDM和IBM的BDWM模型,并提出了优化建议。适合大数据开发者和面试者了解数据仓库设计模式。
摘要由CSDN通过智能技术生成

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip204888 (备注大数据)
img

正文

这个定义的确官方,但是却指出了数据仓库的四个特点。
特点
面向主题:数据仓库都是基于某个明确主题,仅需要与该主题相关的数据,其他的无关细节数据将被排除掉
集成的:从不同的数据源采集数据到同一个数据源,此过程会有一些ETL操作
随时间变化:关键数据隐式或显式的基于时间变化
信息本身相对稳定:数据装入以后一般只进行查询操作,没有传统数据库的增删改操作
效率足够高:数据仓库的分析数据一般分为日、周、月、季、年等,可以看出,日为周期的数据要求的效率最高,要求24小时甚至12小时内,目前普遍的数据展现方式为T+1,即当日处理昨日的业务数据。
数据质量:基于数据仓库的应用所面对的一般为企业决策层用户,所以对数据仓库提供的各种信息,肯定要准确的数据;但由于数据源有脏数据或者代码不严谨,所以数据仓库流程通常分为多个步骤,包括数据抽取,清洗,转换,装载,查询,展现等等;其中数据清洗则主要对抽取过来各数据源的脏数据和不规范数据进行统一标准化。
扩展性:有的大型数据仓库系统架构设计复杂,是因为考虑到了未来3-5年的扩展性,这样的话,未来不用花太多时间去重建数据仓库系统,就能很稳定运行。主要体现在数据建模的合理性,数据仓库方案中多出一些中间层,使海量数据流有足够的缓冲,不至于因为数据源的变动而导致用户应用功能的频繁变动。

个人理解
数据仓库就是整合多个和多种数据源的历史和现在的数据进行标准化整合,统一口径,细粒度的、多维度的分析,帮助高层管理者或者业务分析人员做出商业战略决策或商业报表。唤醒企业沉睡多年的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值