第三,就流式处理系统而言,基本都支持 Kafka 作为数据源。例如 Storm 具有专门的 kafka-spout,而 Spark 也提供专门的 spark-streaming-kafka 模块。事实上,Kafka 基本上是主流的流式处理系统的标准数据源。换言之,大部分流式系统中都已部署了 Kafka,此时使用 Kafka Streams 的成本非常低。
第四,使用 Storm 或 Spark Streaming 时,需要为框架本身的进程预留资源,如 Storm 的 supervisor 和 Spark on YARN 的 node manager。即使对于应用实例而言,框架本身也会占 用部分资源,如 Spark Streaming 需要为 shuffle 和 storage 预留内存。但是 Kafka 作为类库不 占用系统资源。
第五,由于 Kafka 本身提供数据持久化,因此 Kafka Streams 提供滚动部署和滚动升级以 及重新计算的能力。
第六,由于 Kafka Consumer Rebalance 机制,Kafka Stream 可以在线动态调整并行度。
二、Kafka Streams 数据清洗案例
0)需求
实时处理单词带有”>>>”前缀的内容。例如输入”aaa>>>bbb”,最终处理成 “bbb”