大数据生态圈常用组件(一):数据库、查询引擎、ETL工具

整理了当年使用过的一些,大数据生态圈组件的特性和使用场景,若有不当之处,请留言斧正,一起学习成长。

组件名属性标签特性使用场景价格成本
Mysql 关系型数据库,行式存储,支持sql轻量级数据分析,存储hive的元数据,kettle的资源库,web 应用后台库。社区版和商业版
Oracle 关系型数据库,行式存储,支持sql中量级数据分析,存储。可分布式BI(商业智能)社区版和商业版
Hive 基于HDFS的数据仓库,可行(textfile)可列(parquet)存储,支持sql支持数据量大,依赖jdk,hadoop,元数据存储一般使用mysql数据仓库,离线大数据集的批处理作业开源
Spark 基于内存的大规模数据处理快速通用的计算引擎,支持sqlJob中间输出结果可以保存在内存中,从而不再需要读写HDFS。
通用引擎: 支持SQL 查询、文本处理、机器学习
适用于数据挖掘与机器学习;
hive on saprk的快速离线计算
开源
Spark Streaming流式处理高吞吐量的、具备容错机制的实时流数据的处理实时数据处理开源
Hbase 高可靠性、高性能、面向列、可伸缩的分布式存储系统
问世灵感:Google论文Bigtable
基于zookerper,hadoop,适合于非结构化数据存储的数据库适用超大数据存储,准实时查询;
bitmap存储
软件开源
低硬件成本(hadoop)
ES分布式全文搜索引擎ES自动可以将海量数据分散到多台服务器上去存储和检索,支持海量数据进行近实时的全文检索(like "%ABC%")和结构化检索(= "ABC" )站内搜索(电商,招聘,门户等),IT系统(OA,CRM,ERP);维基百科,GitHub开源
redis 高性能的key-value数据库读写性能极高,丰富的数据类型结合storm的实时查询分析,java高并发秒杀开源
memcache基于内存分布式的高速缓存系统,对于一些大型的、需要频繁访问数据库的网站访问速度提升效果十分显著。单点登录页面跳转的时候,解决重复性登录的问题。开源
HANA软硬结合,基于内存的高性能实时数据计算平台,支持sql用大内存提供内存数据库,并在内存数据库里采用列式存储从而可以将更多的数据装进内存(列式存储更适合数据压缩)高性能数据插入、修改和高效的查询功能;外部数据快速建模;报表展现。绫致时装在用非常昂贵
Oracle Exadata软硬结合;重内存,轻磁盘把大部分数据库操作push到硬件,通过高性能硬件提高数据查询速度,通过采用列式结构减少需要在存储和内存间移动的数据量,通过高速网络接口提供数据传输的效率企业数据分析和常规建模适中
TeraData数据仓库,支持sql,性能超赞专注于大数据分析、数据仓库和整合营销管理解决方案银行数仓非常昂贵
Kafka高吞吐量、低延迟:kafka每秒可以处理几十万条消息;
可扩展性:kafka集群支持热扩展;
持久性、可靠性:消息被持久化到本地磁盘,并且支持数据备份防止数据丢失;
容错性:允许集群中节点失败(若副本数量为n,则允许n-1个节点失败);
高并发:支持数千个客户端同时读写
一个分布式、支持分区的(partition)、多副本的(replica),基于zookeeper协调的分布式消息系统,它的最大的特性就是可以实时的处理大量数据以满足各种需求场景:比如基于hadoop的批处理系统、低延迟的实时系统、storm/Spark流式处理引擎,web/nginx日志、访问日志,消息服务等等,用scala语言编写日志收集:可以用Kafka可以收集各种服务的log;
消息系统:解耦和生产者和消费者、缓存消息等;
用户活动跟踪:Kafka经常被用来记录web用户或者app用户的各种活动,如浏览网页、搜索、点击等;
运营指标:Kafka也经常用来记录运营监控数据;
流式处理:比如spark streaming和storm
开源
Flume高可用的分布式海量日志采集、聚合和传输的系统接收各方数据并进行简单处理,支持多通道,多数据类型,和规模宏大的社交网络节点事件数据社交网站,电商网站:facebook,twitter,亚马逊,flipkart开源
storm分布式、高容错的实时计算系统分布式系统:可横向拓展,现在的项目不带个分布式特性都不好意思开源。
高度容错:模块都是无状态的,随时宕机重启。
无数据丢失:Storm创新性提出的ack消息追踪框架和复杂的事务性处理,能够满足很多级别的数据处理需求。
Storm被广泛应用于实时分析,在线机器学习,持续计算、分布式远程调用等领域开源
     
ETL工具    
Kettle ETL工具本地开发,通过资源库同步在服务器执行常用ETL工具之一开源
Sqoop ETL工具常规etl工具,可集群部署mysql与hadoop数据迁移等开源
     
调度工具    
azkaban调度工具处理有依赖关系的复杂任务调度,只支持mysql存储基本信息常用调度工具之一开源
crontablinux自带调度工具简单任务调度适用日常少量调度开源
ooize调度工具处理复杂任务调度,但好像并不好用大数据领域调度工具之一(Oozie, Azkaban,Cascading,Hamake)开源
大数据生态圈常用组件(二):概括介绍、功能特性、适用场景 [点赞之后,下一篇传送门:https://blog.csdn.net/weixin\_39032019/article/details/89341713]( )

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数大数据工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)
img

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值