大数据最新MATLAB:Image Processing Toolbox工具箱入门实战,2024年最新资深大数据开发开发带你入门Framework

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

目录

1.基本图像导入、处理和导出

2.实战项目一:利用imfindcircles()函数检测和测量图像中的圆形目标

3.实战项目二:图像增强(预处理)统计米粒

4.实战项目三:利用Sobel算子进行裂纹检测


1.基本图像导入、处理和导出

Basic Image Import, Processing, and Export- MATLAB & SimulinkThis example shows how to read an image into the workspace, adjust the contrast in the image, and then write the adjusted image to a file.icon-default.png?t=N7T8https://www.mathworks.com/help/releases/R2021b/images/image-import-and-export.html以下是输入的缺陷检测图片1.jpg(左),和经过histeq(直方图均衡使强度值扩展分布到了图像的完整范围内)函数提高对比度的2.jpg(右)。

I = imread("1.jpg");
whos I % 使用 whos 命令,检查 imread 函数如何在工作区中存储图像数据。
% 调用 imhist 函数创建直方图。
% 请在调用 imhist 之前使用 figure 命令,这样直方图就不会覆盖当前图窗窗口中显示的图像 I。
imhist(I)  
I2 = histeq(I);  % 使用 histeq 函数提高图像的对比度
imshow(I2)
imwrite(I2, '2.jpg');  % 使用 imwrite 函数,将刚刚经过调整的图像 I2 写入磁盘文件
imfinfo('2.jpg')  % imfinfo 函数返回文件中图像的相关信息

2.实战项目一:利用imfindcircles()函数检测和测量图像中的圆形目标

Detect and Measure Circular Objects in an Image- MATLAB & Simulink ExampleThis example shows how to automatically detect circular objects in an image and visualize the detected circles.icon-default.png?t=N7T8https://www.mathworks.com/help/releases/R2021b/images/detect-and-measure-circular-objects-in-an-image.htmlimfindcircles()使用基于圆形 Hough 变换 (CHT) 的算法在图像中寻找圆形。之所以使用这种方法,是因为当存在噪声、遮挡和变化的光照条件时该方法表现稳健。

有关imfindcircles()的详细信息,请参阅帮助文档:

Find circles using circular Hough transform - MATLAB imfindcirclesThis MATLAB function finds the circles in image A whose radii are approximately equal to radius.icon-default.png?t=N7T8https://www.mathworks.com/help/releases/R2021b/images/ref/imfindcircles.html本项目旨在演示调参来寻求圆目标的过程。

rgb = imread('coloredChips.png');
imshow(rgb)

% 此段代码是为了清楚对象是比背景亮还是比背景暗,输出灰度图片看一看
% gray_image = rgb2gray(rgb);
% imshow(gray_image)

% 此段代码用来确定imfindcircles函数里的radiusRange,测出来应该是[25 30]
% d = drawline;  % 画一条线,大致画出圆的直径
% pos = d.Position  % 线的位置
% diffPos = diff(pos);  % 各行之间的一阶差分,也就是delta x和delta y
% diameter = hypot(diffPos(1),diffPos(2))  % 平方和的平方根(斜边)

% 这里开始找圆,用的是imfindcircles()函数
% 背景相当亮,大多数塑料片比背景暗,将参数 'ObjectPolarity' 设置为 'dark' 以搜索较暗的圆。
% imfindcircles 有两种不同寻找圆的方法:默认方法(称为相位编码方法)/两阶段方法,这里指定使用两阶段方法
% 两种方法都能准确找到部分可见(遮挡)塑料片的中心和半径。
[centers,radii] = imfindcircles(rgb,[25 30],'ObjectPolarity','dark', ...
    'Sensitivity',0.92,'Method','twostage');

% 注意到黄色圆都没有被检测到
% 与背景相比,黄色塑料片的强度几乎相同,甚至更亮。因此,要检测黄色塑料片,'ObjectPolarity' 改为 'bright'。
% [centersBright,radiiBright] = imfindcircles(rgb,[25 30], ...
%     'ObjectPolarity','bright','Sensitivity',0.95)
% 找到了三个原先未检测到的黄色塑料片,但仍有黄色塑料片未检测到

% 要查找圆,imfindcircles 仅使用图像中的边缘像素。这些边缘像素基本上是具有高梯度值的像素。
% 'EdgeThreshold' 参数控制像素的梯度值必须有多高,才能将其视为边缘像素并包含在计算中。
% 该参数的高值(更接近 1)只允许包含强边缘(较高梯度值),而低值(更接近 0)的宽容度更高,可在计算中包含较弱的边缘(较低梯度值)。
% 对于检测不到黄色塑料片的情况,是因为对比度低,一些边界像素(在塑料片的圆周上)预期具有低梯度值。因此,请降低 'EdgeThreshold'。
[centersBright,radiiBright,metricBright] = imfindcircles(rgb,[25 30], ...
    'ObjectPolarity','bright','Sensitivity',0.95,'EdgeThreshold',0.1);

imshow(rgb)
hBright = viscircles(centersBright, radiiBright,'Color','b');  % 蓝色画出
h = viscircles(centers,radii);  % 红色画出

3.实战项目二:图像增强(预处理)统计米粒

本案例说明如何在分析前的预处理步骤增强图像。例如校正背景亮度不均匀问题,并将图像转换为二值图像,以便于识别前景对象(单个米粒)。然后分析对象,例如计算每粒大米的面积,并计算图像中所有对象的统计量。

关于形态学图像处理的知识(strel腐蚀和imopen形态学开操作),可参考冈萨雷斯的数字图像处理第9章和以下资料:

形态学运算与仿真:图像处理中形态学操作的简单解释 - 知乎 (zhihu.com)icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/628780157

简而言之,形态学运算包括膨胀、腐蚀、开运算、闭运算等。其中:

  • 膨胀操作可以将图像中的物体变大,使它更加连通;
  • 腐蚀操作则可以将图像中的物体变小,使它更加细化;
  • 开运算可以去除噪声,平滑图像的边缘;
  • 闭运算可以填补图像中物体的孔洞。

这里应用strel腐蚀和imopen形态学开操作,目的是得到背景。

经过预处理得到图像的二值版本,然后利用bwconncomp()在二值图像中查找所有连通分量(对象)得到所有米粒的信息。最后展示了经过预处理后的图片和米粒面积的直方图:

I = imread('rice.png');
% imshow(I)

% strel 对象表示一个平面形态学结构元素,该元素是形态学膨胀和腐蚀运算的重要部分。
se = strel('disk',15);
% 开操作Open先对图像进行腐蚀操作,然后再进行膨胀操作的组合过程,可以用于消除小的物体或细节,并且可以平滑物体的边界
% 闭操作Close则相反,它是先对图像进行膨胀操作,然后再进行腐蚀操作的组合过程。可以用于填补小的空洞或裂缝,并且也可以平滑物体的边界。
% imopen执行形态学开操作,然后得到背景
background = imopen(I,se);
% imshow(background)
I2 = I - background;
% 默认情况下,imadjust 对所有像素值中最低的 1% 和最高的 1% 进行饱和处理。此运算可提高输出图像的对比度。
I3 = imadjust(I2);
bw = imbinarize(I3);  % 使用 imbinarize 函数将灰度图像转换为二值图像
bw = bwareaopen(bw,50);  % 使用 bwareaopen 函数去除图像中的背景噪声。
cc = bwconncomp(bw,4);  % bwconncomp查找二值图像中的连通分量
% cc.NumObjects
labeled = labelmatrix(cc);  % 使用 labelmatrix 根据 bwconncomp 的输出创建标签矩阵,将二进制图像中的连通分量标记为唯一的整数值。使用标签矩阵可视化不同的连通分量。
RGB_label = label2rgb(labeled,'spring','c','shuffle');  % 为了更容易区分不同的连通分量,使用label2rgb将标签矩阵显示为RGB图像,并对标签的颜色随机。
% imshow(RGB_label)
graindata = regionprops(cc,'basic');  % regionprops返回二值图像中每个8连通分量(对象)的属性集的测量值。
grain_areas = [graindata.Area];
histogram(grain_areas)
title('Histogram of Rice Grain Area')

4.实战项目三:利用Sobel算子进行裂纹检测

Sobel算子实现步骤:

1.首先需要两个方向(水平和竖直方向)的滤波核:

S_x=\begin{bmatrix} -1 &0 &1 \ -2 &0 &2 \ -1 &0 &1 \end{bmatrix},S_y=\begin{bmatrix} -1 &-2 &-1 \ 0 &0 &0 \ 1 &2 &1 \end{bmatrix}=S_{x}^{T}

这是因为边缘检测的目的标识数字图像中亮度变化明显的点图像属性中的显著变化通常反映了属性的重要事件和变化。所以通常说来图像中梯度较大的点代表着边缘。边缘检测方法分为两类:

  • 基于搜索:利用一阶导数最大值检测边缘。通过寻找图像一阶导数中的最大值检测边界,然后利用计算结果估计边缘的局部方向,代表算法是Sobel算子Scharr算子。这是因为边缘附近的像素值会有明显突变,即变化最大,也就是一阶导数最大(实际操作中通常设置一个阈值)。那么找到最大的一阶导数也就找到了像素变化最大的点,即边缘点。
  • 基于零穿越:利用二阶导数为0检测边缘。代表算法是Laplace算子。因为在一阶导数的基础上再求一次导,那么此时零点就是变化最大的点,即边缘点。

导数定义:f{}'(x)=\lim_{h \to 0}\frac{f(x+h)-f(x-h)}{2h}

对于不连续的函数,一阶导数(一阶均差)可以写作:

f{}'(x)=f(x+1)-f(x)=f(x)-f(x-1)

所以有:f{}'(x)=\frac{f(x+1)-f(x)+f(x)-f(x-1)}{2}=\frac{f(x+1)-f(x-1)}{2},也就是后-前。

因此我们有:

x方向的梯度:拿后一列(下标j+1)减去前一列(下标j-1):

\frac{\partial f}{\partial x}=\left |[f(i-1,j+1)+f(i,j+1)+f(i+1,j+1)]-[f(i-1,j-1)+f(i,j-1)+f(i+1,j-1)] \right |

y方向的梯度:拿后一行(下标i+1)减去前一行(下标i-1):

\frac{\partial f}{\partial y}=\left |[f(i+1,j-1)+f(i+1,j)+f(i+1,j+1)]-[f(i-1,j-1)+f(i-1,j)+f(i-1,j+1)] \right |

写成卷积表达式就是:

S_x=\begin{bmatrix} -1 &0 &1 \ -1 &0 &1 \ -1 &0 &1 \end{bmatrix},S_y=\begin{bmatrix} -1 &-1 &-1 \ 0 &0 &0 \ 1 &1 &1 \end{bmatrix}=S_{x}^{T}

\frac{\partial f}{\partial x}=S_x\bigotimes f,\frac{\partial f}{\partial y}=S_y\bigotimes f

梯度:\nabla f=[\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}],\left | \nabla f \right |=\sqrt{\left | \frac{\partial f}{\partial x} \right |^2+\left |\frac{\partial f}{\partial y} \right |^2}

为计算方便起见,通常:\left | \nabla f \right |=\left | \frac{\partial f}{\partial x} \right |+\left |\frac{\partial f}{\partial y} \right |

以上卷积核S_x=\begin{bmatrix} -1 &0 &1 \ -1 &0 &1 \ -1 &0 &1 \end{bmatrix},S_y=\begin{bmatrix} -1 &-1 &-1 \ 0 &0 &0 \ 1 &1 &1 \end{bmatrix}=S_{x}^{T}称为Prewitt算子。现在我们在计算梯度时引入加权平均,就构成了Sobel算子Schar算子:

Sobel算子提高了4邻域的权重:S_x=\begin{bmatrix} -1 &0 &1 \ -2 &0 &2 \ -1 &0 &1 \end{bmatrix},S_y=\begin{bmatrix} -1 &-2 &-1 \ 0 &0 &0 \ 1 &2 &1 \end{bmatrix}=S_{x}^{T}

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

)]
[外链图片转存中…(img-BoNIDB4O-1715767401111)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值