2024年最新数据湖Iceberg、Hudi和Paimon比较_数据湖框架对比

本文对比分析了2024年的主流数据湖框架Apache Iceberg、Hudi和Paimon,涉及ACID支持、Schema变更、商业公司支持和性能等方面。在Schema变更上,Hudi支持Spark的schema演进,Paimon支持有限。性能测试显示,Paimon在某些场景下读写性能优于Hudi和Iceberg。企业支持方面,三者均有大厂背书,如腾讯、阿里、字节跳动等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

| ACID Support | YES | YES | YES |
| Isolation Level | Write Serialization | Snapshot Isolation | Snapshot Isolation |
| Concurrent Multi-Writers | YES | YES | YES |
| Time travel | YES | YES | YES |

对于数据湖来说,三种隔离分别代表。

Serialization:所有的 reader 和 writer 都必须串行执行;
Write Serialization: 多个 writer 必须严格串行,reader 和 writer 之间则可以同时跑;
Snapshot Isolation: 如果多个 writer 写的数据无交集,则可以并发执行;否则只能串行。Reader 和 writer 可以同时跑。
综合起来看,Snapshot Isolation 隔离级别的并发性是相对比较好的。

4.Schema变更支持

对比项Apache IcebergApache HudiApache Paimon
Schema EvolutionALLback-compatibleback-compatible
Self-defined schema objectYESNO(spark-schema)NO(我理解,不准确)

Schema Evolution:指schema变更的支持情况,我的理解是hudi仅支持添加可选列和删除列这种向后兼容的DDL操作,而其他方案则没有这个限制。

Paimon支持有限的schema变更。目前,框架无法删除列,因此 DROP 的行为将被忽略,RENAME 将添加新列,列类型只支持从短到长或范围更广的类型。

Self-defined schema objec:指数据湖是否自定义schema接口,以期跟计算引擎的schema解耦。这里iceberg是做的比较好的,抽象了自己的schema,不绑定任何计算引擎层面的schema。

在Hudi 0.11.0版本中,针对Spark 3.1、Spark 3.2版本增加了schema功能的演进。如果启用 set hoodie.schema.on.read.enable=true以后,我们可以对表列和对表进行一系列的操作。列的变更(增加、删除、重命名、修改位置、修改属性),表的变更(重命名、修改属性) 等。

5.其它功能

对比项Apache IcebergApache HudiApache Paimon
One line demoNot GoodMediumGood
Python SupportYESNONO(不确定)
File EncryptionYESNONO
Cli CommandNOYESYES

One line demo:指的是,示例demo是否足够简单,体现了方案的易用性,Iceberg稍微复杂一点(我认为主要是Iceberg自己抽象出了schema,所以操作前需要定义好表的schema)。做得最好的其实是delta,因为它深度跟随spark易用性的脚步。

Python Support:Python支持,很多基于数据湖之上做机器学习的开发者会考虑的问题,Iceberg比较做的好。

File Encryption:出于数据安全的考虑,Iceberg还提供了文件级别的加密解密功能,这是其他方案未曾考虑到的一个比较重要的点。

Cli Command:命令行

6.商业公司支持

Apache Iceberg

Iceberg 在国内的厂商非常多,腾讯一马当先,是贡献者数量最多的团队,国内的字节 、网易也紧随其后,相比腾讯 Iceberg 和 Hudi 通吃的战略,阿里在 Iceberg 的投入就少了非常多,国外的贡献者也非常多,包括 Netflix、Apple 等等

Apache Hudi

Hudi 在国内的应用很广,包括国内的大厂阿里巴巴、腾讯、字节跳动和华为,国外的话主要是 Uber 和 Amazon。

Apache Paimon

2023 年 3 月 12 日,Flink Table Store 项目顺利通过投票,正式进入 Apache 软件基金会 (ASF) 的孵化器,改名为 Apache Paimon (incubating)。进入孵化器后,Paimon 得到了众多的关注,包括 阿里云、字节跳动、Bilibili、汽车之家、蚂蚁 等多家公司参与到 Apache Paimon 的贡献,也得到了广大用户的使用。

7.性能比较

7.1 Iceberg和Hudi比较

Brooklyn Data在 2022 年 11 月发布 Delta 与 Iceberg 的基准测试结果:Setting the Table: Benchmarking Open Table Formats

Onehouse 添加了 Apache Hudi,并在Brooklyn Github 代码库中发布了代码:https://github.com/brooklyn-data/delta/pull/2

测试结果见上图所示,Delta 和 Hudi 不相上下,Iceberg 落后并且还有一定的差距。

注意:在运行 TPC-DS 基准比较 Hudi、Delta 和 Iceberg 时,需要记住的一个关键点是,默认情况下 Delta + Iceberg 是针对仅追加的工作负载进行优化的,而 Hudi 默认情况下是针对可变工作负载进行优化的。默认情况下,Hudi 使用 "upsert "写模式,与插入相比,这种写模式自然会产生写开销。benchmarks 这个东西还是要以实际的业务场景测试为好,benchmarks 只能作为参考。

7.2 Hudi和Paimin比较

(1) Flink中文社区对Hudi和Paimon进行了性能比较,详细过程见:构建 Streaming Lakehouse:使用 Paimon 和 Hudi 的性能对比

直接说结论:

在 upsert 场景,关闭 compaction 时,Paimon 读写性能均优于 Hudi,且 Hudi 对 TM 的内存要求更高。

在 upsert 场景,开启 compaction 时,Paimon 读写性能均优于 Hudi。对比前面的关闭 compaction 测试,Paimon 和 Hudi 的写性能均有所下降,但读性能得到提升。

在 append 场景,Paimon 读写性能优于 Hudi,且二者都对 TM 内存要求均不高。

(2) 同程也对Hudi和Paimon进行了性能测试,详细内容见:Apache Paimon 在同程旅行的实践进展

同程在实践过程中,发现在全量+增量写入的场景中,相对 Hudi,Paimon 在相同计算资源的情况下,摄入的速度要优于 Hudi MOR 的摄入,大概有 3 倍左右的差距。查询场景下会更明显,在同样数据量的情况下,Paimon 的查询速度要优于 Hudi,大概有 7 倍左右的差距。

(3) 同时,一些开发人员对Flink 官方测试结果产生疑问,自己对也Hudi和Paimon进行了性能测试,具体过程见:Paimon VS Hudi 写入效率大PK

发现Paimon 的写入效率跟写入效果(文件数量),写入速度是 Hudi 的2倍多,而文件数量只有 Hudi数量的一半不到。对比Flink官方测试出来的,比 Hudi COW 表写入效率快12倍的结论,没有完全没有体现出来(测试的数据量不同)

实验测试结论为:Hudi 的MOR 表无论是写入速度,还是生成的文件数量,都要比 Paimon 优秀。而Hudi 的 COW 表,则正好相反,其无论写入速度,还是文件生成数量,则要比 Paimon 差,但这个差距,貌似在随着 checkpoint 时间的增大,逐渐在缩小。

8.总结

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

<think>好的,用户想了解关于数据湖Paimon的学习教程。首先,我需要确认Paimon是什么。根据我的知识,Apache Paimon(原名Flink Table Store)是一个流式数据湖平台,与Apache Flink紧密集成,支持实时数据分析更新。用户可能想学习如何使用它进行大数据处理。 接下来,我需要考虑用户可能的背景。他们可能是大数据开发者或数据工程师,对数据湖技术有一定了解,但需要具体的学习资源。用户可能希望从基础开始,逐步掌握Paimon的核心概念实际操作。 然后,我需要整理学习路径。通常,学习新技术需要从官方文档开始,然后是快速入门指南,接着是核心概念,比如数据存储结构、流批一体、实时更新等。实践部分包括环境搭建、数据读写、与Flink集成以及优化技巧。可能还需要社区资源进阶内容,如源码贡献案例研究。 还要注意用户提到的格式要求:行内公式用$...$,独立公式用$$...$$。虽然Paimon的内容可能不涉及太多数学公式,但如果有性能指标或算法,可能需要适当使用LaTeX,比如写入性能$O(n)$,查询延迟$T$等。 需要确保回答结构清晰,分步骤介绍,帮助用户系统地学习。同时检查资源链接是否有效,推荐书籍、社区等是否相关。可能还需要提醒用户实践的重要性,以及如何参与社区获取帮助。 最后,验证信息准确性,比如确认Paimon最新版本功能,避免过时的内容。确保推荐的学习资源是当前权威的,比如官方网站、GitHub仓库Flink相关文档。</think>以下为Apache Paimon(原Flink Table Store)的系统化学习路径,采用分阶段结构帮助您掌握核心技术: $$ \text{学习路径} = \text{基础理论} \oplus \text{环境实践} \oplus \text{高级特性} $$ ### 一、基础准备阶段 1. **核心概念理解** - 数据湖核心特征:支持ACID事务、Schema演化、流批统一处理 - 技术定位:面向流式数据处理的Table Storage(区别于Hudi/Delta/Iceberg) - 架构优势:低延迟数据摄入($\leq 5min$)、实时更新能力、高并发查询 2. **官方文档精读** - 必读章节: ```markdown - 架构设计原理(LSM结构 + 列式存储) - 数据版本管理(MVCC实现机制) - 流式CDC对接方案 - 性能优化白皮书 ``` ### 二、环境搭建实践 1. **本地开发环境** ```shell # Maven依赖配置示例 <dependency> <groupId>org.apache.paimon</groupId> <artifactId>paimon-flink</artifactId> <version>0.6</version> </dependency> ``` 2. **Flink集成配置** ```sql -- Flink SQL 表声明示例 CREATE TABLE user_behavior ( user_id BIGINT, item_id BIGINT, action STRING, dt STRING ) WITH ( 'connector' = 'paimon', 'path' = 'file:///tmp/paimon/user_behavior', 'auto-create' = 'true' ); ``` ### 三、核心功能实践 1. **数据写入模式对比** | 模式 | 语法示例 | 适用场景 | |---|---| ---| | 流式写入 | `INSERT INTO user_behavior SELECT ...` | 实时数据管道 | | 批量导入 | `BATCH INSERT INTO ...` | 历史数据迁移 | 2. **实时更新演示** ```sql -- 创建支持主键的表 CREATE TABLE user_profile ( user_id BIGINT PRIMARY KEY, name STRING, last_login TIMESTAMP ) WITH (...); -- 使用CDC数据更新 INSERT INTO user_profile SELECT user_id, name, login_time FROM kafka_cdc_source; ``` ### 四、进阶优化技巧 1. **存储优化公式** $$ Q_{\text{优化}} = \frac{\text{Compaction频率}}{\text{文件大小阈值}} \times \text{索引效率} $$ - 配置建议: ```properties # 合并策略 compaction.max.file-num = 10 # 列式存储优化 format.compression-codec = zstd ``` 2. **查询加速方案** - 物化视图构建: ```sql CREATE MATERIALIZED VIEW daily_active_users PARTITIONED BY (dt) AS SELECT dt, COUNT(DISTINCT user_id) FROM user_behavior GROUP BY dt; ``` ### 五、学习资源矩阵 1. **官方渠道** - GitHub仓库:https://github.com/apache/paimon - 最新文档:https://paimon.apache.org/docs/master/ 2. **实践案例库** - 电商实时数仓构建(含Flink SQL模板) - IoT设备状态管理方案 - 金融交易流水分析场景 建议学习路线:每日投入$2\text{h}$,按"文档精读 → 示例复现 → 项目移植"三阶段推进,8周可达到生产级应用水平。遇到问题优先查阅GitHub Issues历史记录(问题匹配度$\geq 85\%$),其次通过dev邮件列表提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值