数据湖Iceberg、Hudi和Paimon比较

本文对比了ApacheIceberg、ApacheHudi和ApachePaimon这三个开源数据湖项目在社区发展、功能特性、ACID支持和性能方面的差异,强调了实际业务场景中选择合适方案的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.社区发展现状

项目 Apache Iceberg Apache Hudi Apache Paimon
开源时间 2018/11/6 2019/1/17 2023/3/12
License Apache-2.0 Apache-2.0 Apache-2.0
Github Watch 148 1.2k 70
Github Star 5.3k 4.9k

1.7k

Github Fork 1.9k 2.3k 702
Github issue(Open) 898 481 263
Github issue(closed) 2054 2410 488
Github Open PR(Open) 565 449 82
Github Open PR(Closed) 6240 7378 2049
Committers 454 436 131
Releases 17 16 3
Release Latest Apache Iceberg 1.4.3 0.14.1 Release Release 0.6

(以上数据为2024年2月21日)

可见Apache iceberg和Apache hudi不相伯仲,Apache Paimon成立时间较晚。

Uber的工程师分享了大量Hudi的技术细节和内部方案落地,研究官网的近10个PPT已经能较为轻松理解内部细节,此外国内的小伙伴们也在积极地推进社区建设,提供了官方的技术公众号和邮件列表周报。

Iceberg 相对会平静一些,社区的大部分讨论都在 Github 的 issues 和 pull request 上,邮件列表的讨论会少一点,不少有价值的技术文档要仔细跟踪 issues 和 PR 才能看到,这也许跟社区核心开发者的风格有关。

Paimon 项目的committers可以看出主要由国人发起和主导,具备更好的本地化支持。

2.功能比较

实时数据湖是一种数据存储管理架构,具有实时可靠的特性。Delta、HudiIceberg是实时数据湖的三种常见的开源工具。 Delta是由Databricks开发的一种用于构建实时数据湖的开源工具。它提供了事务一致性、数据不可变性快速查询等特性。Delta使用了写时复制技术,可以实现数据的原子性一致性,并支持合并(merge)操作,使得数据的变更能够实时应用于数据湖中。 Hudi(Hadoop Upserts Deletes and Incrementals)是一种由Uber开源的实时数据湖工具。它能够支持插入、更新删除等数据操作,并且具备增量数据的流式处理能力。Hudi还支持异步索引构建数据快照等功能,能够提供较好的查询性能数据一致性。 Iceberg是由Netflix开源的一种用于构建实时数据湖的工具。它提供了强大的事务性写入、时间旅行查询模式演化等功能。Iceberg支持快照(snapshot)版本控制的方式管理数据,可以实现数据的版本回退数据架构的演化。 这三种工具都可以用于实时数据湖的构建,但在具体应用上有一些差异。Delta更加关注与数据湖Apache Spark的集成,适用于需要高性能大规模数据处理的场景。Hudi则更适用于增量数据流的处理对数据进行实时更新的需求。Iceberg则更注重数据版本管理数据架构演化的能力。根据具体的业务需求技术栈选择适合的工具,可以更好地构建实时数据湖
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值