n = x * w
y = tf.reduce_sum(n)
loss = tf.abs(y - yTrain)
optimizer = tf.compat.v1.train.RMSPropOptimizer(0.001)
train = optimizer.minimize(loss)
sess = tf.compat.v1.Session()
init = tf.compat.v1.global_variables_initializer()
sess.run(init)
for i in range(5000):
result = sess.run([train, x, w, y, yTrain, loss], feed_dict={x: [90, 80, 70], yTrain: 85})
print(result)
result = sess.run([train, x, w, y, yTrain, loss], feed_dict={x:[98, 95, 87], yTrain: 96})
print(result)
## **代码讲解**
之前设计的神经网络模型中,把学生的德育、智育、体育3项分数分别对应x1、x2、x3这了个输入层的节点,这样本身没有问题,但是假设又增加了一个艺术分数, 那么就需要在输入层增加一个x4节点,在隐藏层对应的也要增加一个n4节点。也就是说,**输入数据改变时,即使整套逻辑没有变,也要去修改整个网络模型,比较麻烦。**
另外,节点数多了也会让模型图看起来比较复杂。所以在通常的神经网络中,很多时候会把这种串的数据组织成一个**“向量”**来送入神经网络进行计算。这里的“向量”与数学几何中的向量概念稍有不同&#x