深度学习---三好学生各成绩所占权重问题(3)_c++评三好学生代码(1)

本文介绍了如何在神经网络中使用向量表示输入数据,通过TensorFlow实现模型简化,如使用`tf.placeholder`处理多维输入,以及如何调整隐藏层和输出层的计算以适应向量输入。作者强调了知识体系化的学习对于技术提升的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

n = x * w

y = tf.reduce_sum(n)

loss = tf.abs(y - yTrain)

optimizer = tf.compat.v1.train.RMSPropOptimizer(0.001)

train = optimizer.minimize(loss)

sess = tf.compat.v1.Session()

init = tf.compat.v1.global_variables_initializer()

sess.run(init)

for i in range(5000):
result = sess.run([train, x, w, y, yTrain, loss], feed_dict={x: [90, 80, 70], yTrain: 85})
print(result)

result = sess.run([train, x, w, y, yTrain, loss], feed_dict={x:[98, 95, 87], yTrain: 96})
print(result)

## **代码讲解**


        之前设计的神经网络模型中,把学生的德育、智育、体育3项分数分别对应x1、x2、x3这了个输入层的节点,这样本身没有问题,但是假设又增加了一个艺术分数, 那么就需要在输入层增加一个x4节点,在隐藏层对应的也要增加一个n4节点。也就是说,**输入数据改变时,即使整套逻辑没有变,也要去修改整个网络模型,比较麻烦。**


        另外,节点数多了也会让模型图看起来比较复杂。所以在通常的神经网络中,很多时候会把这种串的数据组织成一个**“向量”**来送入神经网络进行计算。这里的“向量”与数学几何中的向量概念稍有不同&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值