HarmonyOS 应用开发之ArkData_鸿蒙os kv-store

  • 用户首选项(Preferences):提供了轻量级配置数据的持久化能力,并支持订阅数据变化的通知能力。不支持分布式同步,常用于保存应用配置信息、用户偏好设置等。
  • 键值型数据管理(KV-Store):提供了键值型数据库的读写、加密、手动备份以及订阅通知能力。应用需要使用键值型数据库的分布式能力时,KV-Store会将同步请求发送给DatamgrService由其完成跨设备数据同步。
  • 关系型数据管理(RelationalStore):提供了关系型数据库的增删改查、加密、手动备份以及订阅通知能力。应用需要使用关系型数据库的分布式能力时,RelationalStore部件会将同步请求发送给DatamgrService由其完成跨设备数据同步。
  • 分布式数据对象(DataObject):独立提供对象型结构数据的分布式能力。如果应用需要重启后仍获取之前的对象数据(包含跨设备应用和本设备应用),则使用数据管理服务(DatamgrService)的对象持久化能力,做暂时保存。
  • 跨应用数据管理(DataShare):提供了数据提供者provider、数据消费者consumer以及同设备跨应用数据交互的增、删、改、查以及订阅通知等能力。DataShare不与任何数据库绑定,可以对接关系型数据库、键值型数据库。如果开发C/C++应用甚至可以自行封装数据库。在提供标准的provider-consumer模式基础上,同时提供了静默数据访问能力,即不再拉起provider而是直接通过DatamgrService代理访问provider的数据(目前仅关系型数据库支持静默数据访问方式)。
  • 统一数据管理框架(UDMF):提供了数据跨应用、跨设备交互标准,定义了跨应用、跨设备数据交互过程中的数据语言,提升数据交互效率。提供安全、标准化数据流通通路,支持不同级别的数据访问权限与生命周期管理策略,实现高效的数据跨应用、跨设备共享。
  • 数据管理服务(DatamgrService):提供其它部件的同步及跨应用共享能力,包括RelationalStore和KV-Store跨设备同步,DataShare静默访问provider数据,暂存DataObject同步对象数据等。

为了能让大家更好的学习鸿蒙(HarmonyOS NEXT)开发技术,这边特意整理了《鸿蒙开发学习手册》(共计890页),希望对大家有所帮助:https://qr21.cn/FV7h05

《鸿蒙开发学习手册》:

如何快速入门:https://qr21.cn/FV7h05
  1. 基本概念
  2. 构建第一个ArkTS应用
  3. ……

开发基础知识:https://qr21.cn/FV7h05
  1. 应用基础知识
  2. 配置文件
  3. 应用数据管理
  4. 应用安全管理
  5. 应用隐私保护
  6. 三方应用调用管控机制
  7. 资源分类与访问
  8. 学习ArkTS语言
  9. ……

基于ArkTS 开发:https://qr21.cn/FV7h05
  1. Ability开发
  2. UI开发
  3. 公共事件与通知
  4. 窗口管理
  5. 媒体
  6. 安全
  7. 网络与链接
  8. 电话服务
  9. 数据管理
  10. 后台任务(Background Task)管理
  11. 设备管理
  12. 设备使用信息统计
  13. DFX
  14. 国际化开发
  15. 折叠屏系列
  16. ……

鸿蒙开发面试真题(含参考答案):https://qr18.cn/F781PH

鸿蒙开发面试大盘集篇(共计319页):https://qr18.cn/F781PH

1.项目开发必备面试题
2.性能优化方向
3.架构方向
4.鸿蒙开发系统底层方向
5.鸿蒙音视频开发方向
6.鸿蒙车载开发方向
7.鸿蒙南向开发方向

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数HarmonyOS鸿蒙开发工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年HarmonyOS鸿蒙开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上HarmonyOS鸿蒙开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新

如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注鸿蒙获取)
img

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

<think>好的,我现在需要帮助用户解决如何正确使用llama-quantize.exe对Claude模型进行Q5_K_M格式量化的问题。首先,我需要确认用户提到的工具和相关参数是否正确。用户提到了llama-quantize.exe,这通常与LLAMA.cpp项目相关,用于量化模型。但Claude模型是Anthropic开发的,与LLAMA架构可能不兼容,所以可能存在混淆。 接下来,我需要验证用户的需求是否可行。如果用户确实想量化Claude模型,可能需要确认是否有适用的工具支持。因为通常来说,量化工具是针对特定模型架构设计的,比如LLAMA.cpp主要针对LLAMA系列模型。如果Claude模型的架构不同,直接使用llama-quantize.exe可能无法正常工作,甚至会导致模型损坏。 然后,我需要检查用户提供的引用内容。引用[1]提到使用Q5_K_M或Q4_K_M来保留性能或节省内存,但这是否适用于Claude模型呢?这里可能存在误解,用户可能将Claude模型与LLAMA模型混淆了,需要指出这一点。 接下来,我应该分步骤解释正确的量化流程,假设用户确实在使用LLAMA模型,并想使用Q5_K_M格式。步骤包括准备模型文件、下载工具、转换命令等,同时提醒用户注意模型兼容性和备份的重要性。 最后,生成相关问题,帮助用户进一步了解量化的注意事项、不同量化方法的区别以及恢复原始模型的方法,确保用户全面理解相关风险和技术细节。</think>以下是如何使用llama-quantize.exe进行模型量化的分步指南: 1. **准备工作** - 准备原始模型文件(如gguf格式的claude-model-f16.gguf) - 下载最新版llama.cpp编译的llama-quantize.exe工具 - 确保存储空间有至少2倍于原模型大小的可用空间 2. **基本量化命令** ```bash llama-quantize.exe 输入文件 输出文件 量化类型 ``` 示例(Q5_K_M量化): ```bash llama-quantize.exe claude-model-f16.gguf claude-model-Q5_K_M.gguf Q5_K_M ``` 3. **参数说明** - Q5_K_M:保留5位主要权重,4位辅助参数的中等量化级别 - Q4_K_M:更激进的4位量化方案 - 量化过程会损失约0.5-1.5%的模型精度(取决于量化类型)[^1] 4. **验证步骤 ```bash llama-quantize.exe --check 输出文件 ``` 该命令将验证量化后的文件完整性 **重要注意事项** 1. 量化前务必备份原始文件 2. Claude模型架构与LLAMA不同,需确认工具兼容性 3. 建议先在小规模测试模型上验证量化效果 4. 量化过程需要较大内存(建议32GB+)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值