【数据挖掘】使用移动平均预测道琼斯、纳斯达克、标准普尔指数—(1)

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

A

t

=

P

1

P

2

P

n

n

S M A_{t}=\frac{P_{1}+P_{2}+\ldots+P_{n}}{n}

SMAt​=nP1​+P2​+…+Pn​​
比如若依次得到测定值

x

1

x

2

x

3

x

4

x

5

x

6

x

7

.

.

.

x_1、x_2、x_3、x_4、x_5、x_6、x_7…

x1​、x2​、x3​、x4​、x5​、x6​、x7​…,按顺序取一定个数所做的全部算术平均值就是移动平均值,如

y

1

=

(

x

1

x

2

x

3

)

/

3

y

2

=

(

x

2

x

3

x

4

)

/

3…

y_1=(x_1+x_2+x_3)/3、y_2=(x_2+x_3+x_4)/3…

y1​=(x1​+x2​+x3​)/3、y2​=(x2​+x3​+x4​)/3…,

panda提供了rolling函数可以用来计算移动平均,使用简单,速度较快:
DataFrame.rolling(window, min_periods=None, freq=None, center=False, win_type=None, on=None, axis=0, closed=None)

参数用法
window表示时间窗的大小,注意有两种形式(int or offset)。如果使用int,则数值表示计算统计量的观测值的数量即向前几个数据。如果是offset类型,表示时间窗的大小。
min_periods最少需要有值的观测点的数量,对于int类型,默认与window相等。对于offset类型,默认为1。
freq不用管,从0.18版本中已经被舍弃。
win_type窗口类型,不用管,默认为None一般不特殊指定
on对于DataFrame如果不使用index(索引)作为rolling的列,那么用on来指定使用哪列。
closed定义区间的开闭,不用管,新版本中已经被舍弃
axis方向(轴),一般都是0。
center是否使用window的中间值作为label,默认为false。只能在window是int时使用。

那么我们使用的简单移动平均直接使用:data['ma5'] = data['Adj Close'].rolling(5).mean(),其表示窗口大小为5的移动平均。计算后,使用matplotlib.pyplot进行画图,横轴为时间,竖轴为预测价格,将其在pyplot 图中打印:

import matplotlib.pyplot as plt
fig = plt.figure(figsize=(16,9))
ax1 = fig.add_subplot(111, ylabel='Price')
data.ma5.plot(ax=ax1, color='plum', lw=2., legend=True)

效果如下:
在这里插入图片描述
我们以同样方法画出多个均线并且和原数据real对比:

data['real'] = data['Adj Close'].rolling(1).mean()
data['ma5'] = data['Adj Close'].rolling(5).mean()
data['ma10'] = data['Adj Close'].rolling(10).mean()


![img](https://img-blog.csdnimg.cn/img_convert/e6d7da01f39b990c061e01c43698fd3a.png)
![img](https://img-blog.csdnimg.cn/img_convert/6bd9f9ab401a220496184bc49a143515.png)

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

img-WC7xMiaj-1715367827428)]
[外链图片转存中...(img-6Aiq5S2t-1715367827428)]

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值