1 线性回归简介
线性回归(Linear regression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。

- h代表学习算法的解决方案或函数,也称为假设(hypothesis),h(x)代表预测的值
注意:
- 只有一个自变量的情况称为单变量回归,多于一个自变量情况的叫做多元回归
- 特征值与目标值之间建立了一个关系,这个关系可以理解为线性模型。
- 线性回归当中主要有两种模型,一种是线性关系,另一种是非线性关系
2 线性回归的初步使用
线性回归API
sklearn.linear_model.LinearRegression()
LinearRegression.coef_:回归系数

'''导入模块'''
from sklearn.linear_model import LinearRegression
'''构造数据集'''
x = [[80, 86],
[82, 80],
[85, 78],
[90, 90],
[86, 82],
[82, 90],
[78, 80],
[92, 94]]
y = [84.2, 80.6, 80.1, 90, 83.2, 87.6, 79.4, 93.4]
'''模型训练'''
# 实例化一个估计器
estimator = LinearRegression()
# 使用fit方法进行训练
estimator.fit(x,y)
# 查看回归系数值
coef = estimator.coef_
print("系数是:\n",coef) # [0.3 0.7]
# 预测值
prediction = estimator.predict([[100, 80]])
print("预测值是:\n",prediction) # [86.]
3 损失函数
为了评估模型拟合的好坏,通常用损失函数来度量拟合的程度。损失函数极小化,意味着拟合程度最好,对应的模型参数即为最优参数

如上图所示,真实结果与我们预测的结果之间存在一定的误差,而这个误差(损失)可以计算出来:

注意:
- yi为第i个训练样本的真实值
- h(xi)为第i个训练样本特征值组合预测函数
- 又称最小二乘法
- 损失函数(Loss Function)度量单样本预测的错误程度,损失函数值越小,模型就越好。
- 代价函数(Cost Function)度量全部样本集的平均误差。
- 目标函数(Object Function)代价函数和正则化函数,最终要优化的函数。
4 优化算法
如何去求模型当中的W,使得损失最小?(目的是找到最小损失对应的W值)
线性回归经常使用的两种优化算法
- 正规方程
- 梯度下降法

本文介绍了线性回归的基本概念,包括单变量和多元回归,以及如何使用sklearn库实现线性回归模型。重点讨论了损失函数的作用,特别是最小二乘法,以及两种优化算法——正规方程和梯度下降的原理与应用。文中还提供了使用Python的示例代码,以及常见梯度下降算法的比较和适用场景。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



