机器学习算法(2)—— 线性回归算法

1 线性回归简介

线性回归(Linear regression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。

在这里插入图片描述

  • h代表学习算法的解决方案或函数,也称为假设(hypothesis),h(x)代表预测的值

注意:

  • 只有一个自变量的情况称为单变量回归,多于一个自变量情况的叫做多元回归
  • 特征值与目标值之间建立了一个关系,这个关系可以理解为线性模型
  • 线性回归当中主要有两种模型,一种是线性关系,另一种是非线性关系

2 线性回归的初步使用

线性回归API

sklearn.linear_model.LinearRegression()

  • LinearRegression.coef_:回归系数

在这里插入图片描述

'''导入模块'''
from sklearn.linear_model import LinearRegression

'''构造数据集'''
x = [[80, 86],
	 [82, 80],
	 [85, 78],
	 [90, 90],
	 [86, 82],
	 [82, 90],
	 [78, 80],
	 [92, 94]]
y = [84.2, 80.6, 80.1, 90, 83.2, 87.6, 79.4, 93.4]

'''模型训练'''
# 实例化一个估计器
estimator = LinearRegression()
# 使用fit方法进行训练
estimator.fit(x,y)
# 查看回归系数值
coef = estimator.coef_
print("系数是:\n",coef) # [0.3 0.7]
# 预测值
prediction = estimator.predict([[100, 80]])
print("预测值是:\n",prediction) # [86.]

3 损失函数

为了评估模型拟合的好坏,通常用损失函数来度量拟合的程度。损失函数极小化,意味着拟合程度最好,对应的模型参数即为最优参数

在这里插入图片描述
如上图所示,真实结果与我们预测的结果之间存在一定的误差,而这个误差(损失)可以计算出来:

在这里插入图片描述

注意:

  • yi为第i个训练样本的真实值
  • h(xi)为第i个训练样本特征值组合预测函数
  • 又称最小二乘法
  • 损失函数(Loss Function)度量单样本预测的错误程度,损失函数值越小,模型就越好。
  • 代价函数(Cost Function)度量全部样本集的平均误差。
  • 目标函数(Object Function)代价函数和正则化函数,最终要优化的函数。

4 优化算法

如何去求模型当中的W,使得损失最小?(目的是找到最小损失对应的W值)

线性回归经常使用的两种优化算法

  • 正规方程
  • 梯度下降法

4.1 正规方程

  1. 什么是正规方程
    在这里插入图片描述
  2. 正规矩阵求解

把损失函数转换成矩阵写法:
在这里插入图片描述

其中y是真实值矩阵,X是特征值矩阵,w是权重矩阵

对其求解关于w(w为自变量)的最小值,导数为零的位置,即为损失的最小值
在这里插入图片描述

注意:

  • 式(1)到式(2)推导过程中,X是一个m行n列的矩阵,并不能保证其有逆矩阵,但是右乘X的转置XT把其变成一个方阵保证其有逆矩阵。式(5)到式(6)推导过程中,和上类似。(面试官可能让你手推公式)

即正规方程为:
在这里插入图片描述

  • X为特征值矩阵,y为目标值矩阵。直接求到最好的结果
  • 当特征过多过复杂时,求解速度太慢并且得不到结果

4.2 梯度下降

  1. 梯度下降

梯度下降法的基本思想可以类比为一个下山的过程。

假设这样一个场景:一个人被困在山上,需要从山上下来(找到山的最低点,也就是山谷)。但此时山上的浓雾很大,导致可视度很低。因此,下山的路径就无法确定,他必须利用自己周围的信息去找到下山的路径。这个时候,他就可以利用梯度下降算法来帮助自己下山。具体来说就是,以他当前的所处的位置为基准,寻找这个位置最陡峭的地方,然后朝着山的高度下降的地方走,(同理,如果我们的目标是上山,也就是爬到山顶,那么此时应该是朝着最陡峭的方向往上走)。然后每走一段距离,都反复采用同一个方法,最后就能成功的抵达山谷。

在这里插入图片描述

梯度是微积分中一个很重要的概念

  • ​ 在单变量的函数中,梯度其实就是函数的微分,代表着函数在某个给定点的切线的斜率。
  • ​ 在多变量函数中,梯度是一个向量,向量有方向,梯度的方向就指出了函数在给定点的上升最快的方向,那么梯度的反方向就是函数在给定点下降最快的方向,这正是我们所需要的。所以我们只要沿着梯度的反方向(α为负的原因)一直走,就能走到局部的最低点!
  1. 梯度下降公式

梯度下降公式(Gradient Descent)
在这里插入图片描述
注意:
α在梯度下降算法中被称作为学习率或者步长,意味着我们可以通过α来控制每一步走的距离,α不能太大也不能太小,太小的话,可能导致迟迟走不到最低点,太大的话,会导致错过最低点。

所以有了梯度下降这样一个优化算法,回归就有了"自动学习"的能力

  1. 梯度下降举例

(1) 单变量函数的梯度下降

我们假设有一个单变量的函数 :J(θ) = θ²
函数的微分:J’(θ) = 2θ
初始化,起点为: θº = 1
学习率:α = 0.4
我们开始进行梯度下降的迭代计算过程:
在这里插入图片描述

如下图,经过四次的运算,也就是走了四步,基本就抵达了函数的最低点,也就是山底

在这里插入图片描述
(2)多变量函数的梯度下降

我们假设有一个目标函数 ::J(θ) = θ₁² + θ₂²
现在要通过梯度下降法计算这个函数的最小值。我们通过观察就能发现最小值其实就是 (0,0)点。但是接下 来,我们会从梯度下降算法开始一步步计算到这个最小值! 我们假设初始的起点为: θº = (1, 3)
初始的学习率为:α = 0.1
函数的梯度为:▽:J(θ) =< 2θ₁ ,2θ₂>

进行多次迭代:
在这里插入图片描述
我们发现,已经基本靠近函数的最小值点
在这里插入图片描述
4. 梯度下降算法

常见的梯度下降算法有:

  • 全梯度下降算法(Full gradient descent),
  • 随机梯度下降算法(Stochastic gradient descent),
  • 随机平均梯度下降算法(Stochastic average gradient descent)
  • 小批量梯度下降算法(Mini-batch gradient descent),

它们都是为了正确地调节权重向量,通过为每个权重计算一个梯度,从而更新权值,使目标函数尽可能最小化。其差别在于样本的使用方式不同。

(1)全梯度下降算法(FG)

在这里插入图片描述
(2)随机梯度下降算法(SG)

在这里插入图片描述
(3)小批量梯度下降算法(mini-bantch)

在这里插入图片描述
(4)随机平均梯度下降算法(SAG)
在这里插入图片描述
(5)算法比较

以下6幅图反映了模型优化过程中四种梯度算法的性能差异。
在这里插入图片描述

在这里插入图片描述
结论:

  • FG方法由于它每轮更新都要使用全体数据集,故花费的时间成本最多,内存存储最大。
  • SAG在训练初期表现不佳,优化速度较慢。这是因为我们常将初始梯度设为0,而SAG每轮梯度更新都结合了上一轮梯度值。
  • 综合考虑迭代次数和运行时间,SG表现性能都很好,能在训练初期快速摆脱初始梯度值,快速将平均损失函数降到很低。但要注意,在使用SG方法时要慎重选择步长,否则容易错过最优解。
  • mini-batch结合了SG的“胆大”和FG的“心细”,从6幅图像来看,它的表现也正好居于SG和FG二者之间。在目前的机器学习领域,mini-batch是使用最多的梯度下降算法,正是因为它避开了FG运算效率低成本大和SG收敛效果不稳定的缺点。

4.3 优化方法比较

在这里插入图片描述

  1. 梯度下降要设置α并不保证一次能获得最优的α,正规方程不用考虑α。
  2. 梯度下降要迭代多次,正规方程不用。(所以,遇到比较简单的情况,可用正规方程)
  3. 梯度下降最后总能得到一个最优结果,正规方程不一定。因为正规方程要求X的转置乘X的结果可逆
  4. 当特征数量很多的时候,正规方程计算不方便,不如梯度下降。

算法选择依据:

  • 小规模数据:
    • 正规方程:LinearRegression(不能解决拟合问题)
    • 岭回归
  • 大规模数据:
    • 梯度下降法: SGDRegressor

4.4 线性回归api再介绍

数据集介绍

在这里插入图片描述

(1)线性回归:正规方程

sklearn.linear_model.LinearRegression(fit_intercept=True)

  • fit_intercept:是否计算偏置
  • LinearRegression.coef_:回归系数(y=kx+b中的 k)
  • LinearRegression.intercept_:偏置(y=kx+b中的 b)

回归模型评估

在这里插入图片描述

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

'''获取数据集'''
data = load_boston()

'''划分数据集'''
x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2)

'''特征工程:数据标准化'''
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.fit_transform(x_test)

'''机器学习:线性回归(正规方程)'''
estimator = LinearRegression()
estimator.fit(x_train, y_train)

'''模型评估'''
y_predict = estimator.predict(x_test)
print("预测值为:", y_predict)
print("系数值为:", estimator.coef_)
print("偏置值为:", estimator.intercept_)
error = mean_squared_error(y_test, y_predict)
print("均方误差为:", error)

(2)线性回归:梯度下降法

SGDRegressor类实现了随机梯度下降学习,它支持不同的loss函数和正则化惩罚项来拟合线性回归模型。

sklearn.linear_model.SGDRegressor(loss="squared_loss", fit_intercept=True, learning_rate ='invscaling', eta0=0.01)

参数:

  • loss:损失类型
    • loss=”squared_loss”: 普通最小二乘法
  • fit_intercept:是否计算偏置
  • learning_rate : 学习率填充, string类型,optional
    • 'constant': eta = eta0 对于一个常数值的学习率来说,可以使用learning_rate=’constant’ ,并使用eta0来指定学习率。
    • 'optimal': eta = 1.0 / (alpha * (t + t0)) [default]
    • 'invscaling': eta = eta0 / pow(t, power_t)

属性:

  • SGDRegressor.coef_:回归系数
  • SGDRegressor.intercept_:偏置
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

'''获取数据集'''
data = load_boston()

'''划分数据集'''
x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2)


![img](https://img-blog.csdnimg.cn/img_convert/f718357c87363a526dca1a7b1af1023c.png)
![img](https://img-blog.csdnimg.cn/img_convert/bf9e0b728aabacca857b33609ebc82de.png)
![img](https://img-blog.csdnimg.cn/img_convert/03d425e35e24b0c41244e188a68fce51.png)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**

_test = train_test_split(data.data, data.target, test_size=0.2)


[外链图片转存中...(img-Oi8qulNt-1714521775721)]
[外链图片转存中...(img-7WZXT4y5-1714521775721)]
[外链图片转存中...(img-amJTQQzf-1714521775722)]

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**

  • 14
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值