Spark大数据分析与实战笔记(第三章 Spark RDD 弹性分布式数据集-05)(2)

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

每日一句正能量

成功的速度一定要超过父母老去的速度,努力吧。做事不必与俗同,亦不与俗异;做事不必令人喜,亦不令人憎。若我白发苍苍,容颜迟暮,你会不会,依旧如此,牵我双手,倾世温柔。

第3章 Spark RDD弹性分布式数据集

章节概要

传统的MapReduce虽然具有自动容错、平衡负载和可拓展性的优点,但是其最大缺点是采用非循环式的数据流模型,使得在迭代计算式要进行大量的磁盘IO操作。Spark中的RDD可以很好的解决这一缺点。

RDD是Spark提供的最重要的抽象概念,我们可以将RDD理解为一个分布式存储在集群中的大型数据集合,不同RDD之间可以通过转换操作形成依赖关系实现管道化,从而避免了中间结果的I/O操作,提高数据处理的速度和性能。接下来,本章将针对RDD进行详细讲解。

3.7 Spark的任务调度

3.7.1 DAG的概念

DAG (Directed Acyclic Graph)叫做有向无环图,Spark中的RDD通过一系列的转换算子操作和行动算子操作形成了一个DAG。DAG是一种非常重要的图论数据结构。如果一个有向图无法从任意顶点出发经过若干条边回到该点,则这个图就是有向无环图。
在这里插入图片描述
从图以看出,4->6->1->2是一条路径,4->6->5也是一条路径,并且图中不存在从顶点经过若干条边后能回到该点。在Spark中,有向无环图的连贯关系被用来表达RDD之间的依赖关系。

根据RDD之间依赖关系的不同可以将DAG划分成不同的Stage(调度阶段)。对于窄依赖来说,RDD分区的转换处理是在一个线程里完成,所以窄依赖会被Spark划分到同一个Stage中;而对于宽依赖来说,由于有Shuffle的存在,所以只能在父RDD处理完成后,下一个Stage才能开始接下来的计算,因此宽依赖是划分Stage的依据,当RDD进行转换操作,遇到宽依赖类型的转换操作时,就划为一个Stage。Stage的具体划分如下图所示。
在这里插入图片描述

  • A、C、E是三个RDD的实例
  • 当A做groupByKey转换操作生成B时,由于groupByKey转换操作属于宽依赖类型,所以就把A划分为一个Stage,如Stage1;
  • 当C做map转换操作生成D, D与E做union转换操作生成F。由于map和union转换操作都属于窄依赖类型,因此不进行Stage的划分,而是将C、D、E、F加入到同一个Stage中;
  • 当F与B进行join转换操作时,由于这时的join操作是非协同划分,所以属于宽依赖,因此会划分为一个Stage,如Stage2;
  • 剩下的B和G被划分为一个Stage,如Stage3。
3.7.2 RDD在Spark中的运行流程

Spark的任务调度流程,即RDD在Spark中的运行流程分为RDD Objects、DAGScheduler、TaskScheduler以及Worker四个部分。
在这里插入图片描述

  1. RDD Objects:当RDD对象创建后,SparkContext会根据RDD对象构建DAG有向无环图,然后将Task提交给DAGScheduler。
  2. DAGScheduler:将作业的DAG划分成不同Stage,每个Stage都是TaskSet任务集合,并以TaskSet为单位提交给TaskScheduler。
  3. TaskScheduler:通过TaskSetManager管理Task,并通过集群中的资源管理器把Task发给集群中Worker的Executor。
  4. Worker:Spark集群中的Worker接收到Task后,把Task运行在Executor进程中,一个进程中可以有多个线程在工作,从而可以处理多个数据分区。

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值