Spark大数据分与实践笔记(第三章 Spark RDD 弹性分布式数据集-01)

本文深入探讨Spark的RDD(Resilient Distributed Dataset),介绍其作为分布式数据集的特性,如容错性、并行计算,并详细阐述了通过文件系统和并行集合两种方式创建RDD的方法。
摘要由CSDN通过智能技术生成

第三章 Spark RDD 弹性分布式数据集

传统的MapReduce虽然具有自动容错、平衡负载和可拓展性的优点,但是其最大缺点是采用非循环式的数据流模型,使得在迭代计算式要进行大星的磁盘I0操作。Spark中的RDD可以很好的解决这一缺点。RDD是Spark提供的最重要的抽象概念,我们可以将RDD理解为一个分布式存储在集群中的大型数据集合,不同RDD之间可以通过转换操作形成依赖关系实现管道化,从而避免了中间结果的V/O操作,提高数据处理的速度和性能。接下来,本章将针对RDD进行详细讲解。

3.1 RDD简介

RDD (Resilient Distributed Dataset),即弹性分布式数据集,是一个容错的、并行的数据结构,可以让用户显式地将数据存储到磁盘和内存中,并且还能控制数据的分区。对于迭代式计算和交互式数据挖掘,RDD可以将中间计算的数据结果保存在内存中,若是后面需要中间结果参与计算时,则可以直接从内存中读取,从而可以极大地提高计算速度。
每个RDD都具有五大特征,具体如下:
1.分区列表
每个RDD被分为多个分区(Partitions),这些分区运行在集群中的不同节点,每个分区都会被一个计算任务处理,分区数决定了并行计算的数量,创建RDD时可以指定RDD分区的个数。如果不指定分区数量,当RDD从集合创建时,默认分区数量为该程序所分配到的资源的CPU核数(每个Core可以承载2~4个Partition),如果是从HDFS文件创建,默认为文件的 Block数。
2.每个分区都有一个计算函数
Spark的RDD的计算函数是以分片为基本单位的,每个RDD都会实现compute函数,对具体的分片进行计算。
3.依赖于其他RDD
RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。
4.(Key,Value)数据类型的RDD分区器
当前Spark中实现了两种类型的分区函数,一个是基于哈希的HashPartitioner,另外一个是基于范围的RangePartitioner。只有对于(Key,Value)的RDD,才会有Partitioner(分区),非(Key,Value)的RDD的Parititioner的值是None。Partitioner函数不但决定了RDD本身的分区数量,也决定了parent RDD Shuffie输出时的分区数量。
5.每个分区都有一个优先位置列表
优先位置列表会存储每个Partition的优先位置,对于一个HDFS文件来说,就是每个Partition块的位置。按照“移动数据不如移动计算"的理念,Spark在进行任务调度的时候,会尽可能地将计算任务分配到其所要处理数据块的存储位置。

3.2 RDD的创建方式

Spark提供了两种创建RDD的方式,分别是从文件系统(本地和HDFS)中加载数据创建RDD和通过并行集合创建RDD。

3.2.1 从文件系统加载数据创建RDD

Spar

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

妉妉师姐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值