【深度学习】基于tensorflow的服装图像分类训练(数据集:Fashion-MNIST)_服装数据集(1)

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

使用CPU训练

# 使用cpu训练
import os

os.environ["CUDA\_VISIBLE\_DEVICES"] = "-1"

使用CPU训练时不会显示CPU型号。
在这里插入图片描述

使用GPU训练

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0]  # 如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True)  # 设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0], "GPU")

使用GPU训练时会显示对应的GPU型号。
在这里插入图片描述

预处理

最值归一化(normalization)

关于归一化相关的介绍在前文中有相关介绍。 最值归一化与均值方差归一化

# 将像素的值标准化至0到1的区间内。
    train_images, test_images = train_images / 255.0, test_images / 255.0
    return train_images, test_images

升级图片维度

因为数据集是灰度照片,所以我们需要将[28,28]的数据格式转换为[28,28,1]

# 调整数据到我们需要的格式
    train_images = train_images.reshape((60000, 28, 28, 1))
    test_images = test_images.reshape((10000, 28, 28, 1))

在这里插入图片描述

显示部分图片

首先需要建立一个标签数组,然后绘制前20张,每行5个共四行
注意:如果你执行下面这段代码报这个错误:TypeError: Invalid shape (28, 28, 1) for image data。那么你就使用我下面注释掉的那句话。

from matplotlib import pyplot as plt

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
                   'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

plt.figure(figsize=(20, 10))
for i in range(20):
    plt.subplot(4, 5, i + 1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    #plt.imshow(train\_images[i].squeeze(), cmap=plt.cm.binary)
    plt.xlabel(class_names[train_labels[i]])
plt.show()


绘制结果:
在这里插入图片描述

建立CNN模型

from tensorflow_core.python.keras import Input, Sequential
from tensorflow_core.python.keras.layers import Conv2D, Activation, MaxPooling2D, Flatten, Dense


def simple\_CNN(input_shape=(32, 32, 3), num_classes=10):
    # 构建一个空的网络模型,它是一个线性堆叠模型,各神经网络层会被顺序添加,专业名称为序贯模型或线性堆叠模型
    model = Sequential()

    # 卷积层1 
    model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))

    # 最大池化层1
    model.add(MaxPooling2D((2, 2), strides=(2, 2), padding='same'))

    # 卷积层2
    model.add(Conv2D(filters=64, kernel_size=(3, 3), padding='same', activation='relu'))

    # 最大池化层2
    model.add(MaxPooling2D((2, 2), strides=(2, 2), padding='same'))

    # 卷积层3
    model.add(Conv2D(filters=64, kernel_size=(3, 3), padding='same', activation='relu'))

    # flatten层常用来将输入“压平”,即把多维的输入一维化,常用在从卷积层到全连接层的过渡。
    model.add(Flatten())

    # 全连接层 对特征进行提取
    model.add(Dense(units=64, activation='relu'))

    # 输出层
    model.add(Dense(10))
    return model



网络结构

包含输入层的话总共9层。其中有三个卷积层,俩个最大池化层,一个flatten层,俩个全连接层。
在这里插入图片描述

参数量

总共参数为319k,训练时间比LeNet-5较长。建议采用GPU训练。

Total params: 257,162
Trainable params: 257,162
Non-trainable params: 0

训练模型

训练模型,进行10轮,将模型保存到1.h5文件中。后期可以直接加载模型继续训练。

from tensorflow_core.python.keras.models import load_model
from Cnn import simple_CNN
import tensorflow as tf


model = simple_CNN(train_images, train_labels)
model.summary()  # 打印网络结构

model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
                  metrics=['accuracy'])
model.save("1.h5")
history = model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels))


训练结果:测试集acc为91.64%。从效果来说该模型还是不错的。
在这里插入图片描述

模型评估

对训练完模型的数据制作成曲线表,方便之后对模型的优化,看是过拟合还是欠拟合还是需要扩充数据等等。

acc = history.history['accuracy']
    val_acc = history.history['val\_accuracy']

    loss = history.history['loss']
    val_loss = history.history['val\_loss']

    epochs_range = range(10)

    plt.figure(figsize=(12, 4))
    plt.subplot(1, 2, 1)
    plt.plot(epochs_range, acc, label='Training Accuracy')
    plt.plot(epochs_range, val_acc, label='Validation Accuracy')
    plt.legend(loc='lower right')
    plt.title('Training and Validation Accuracy')

    plt.subplot(1, 2, 2)
    plt.plot(epochs_range, loss, label='Training Loss')
    plt.plot(epochs_range, val_loss, label='Validation Loss')
    plt.legend(loc='upper right')


![img](https://img-blog.csdnimg.cn/img_convert/40f4200dd6b29a4b6885e14cbc3de12d.png)
![img](https://img-blog.csdnimg.cn/img_convert/ecce3d3e5efef99ee13e9a0d8df512ca.png)
![img](https://img-blog.csdnimg.cn/img_convert/478f60fe7b9e9e72927ada392a61d671.png)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**

7743)]

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值