一定要先了解大模型,看完大模型就明白什么是真正的AI了

最近人工智能AI很热门,讨论的人也越来越多。现在国内互联网大厂越来越重视AI了,开发了很多AI应用工具产品。

那什么是AI,国内大厂在AI方面又做了哪些布局呢?

人工智能简称AI,是一种利用计算机模拟人类智能的技术和方法。它涵盖了机器学习、深度学习、自然语言处理等多个领域,旨在让计算机能够像人类一样进行感知、理解、推理和决策。人工智能的发展离不开大模型的支持,大模型为人工智能提供了强大的计算和学习能力,使得AI技术能够不断进步和应用到更广泛的领域。

大模型是具有庞大参数和复杂结构的深度学习模型系统,主要靠的就是数据和算力,它们通过大量的数据进行训练,从而模拟人类的思考深度学习到丰富的知识,并通过相关应用反馈展现给人类,大模型其实就是AI工具下的底层操作系统

AI大模型是“人工智能预训练大模型”的简称,是指具有大量参数和复杂结构的机器学习模型。大模型的出现,使得人工智能在处理复杂任务时具备了更高的性能和准确性。其中预训练大模型,就像知道所有大量基础知识的学生,完成了通识教育,但是还缺少实践,需要通过实践得到反馈后再做出精细的调整,才能更好地完成任务。每天都有用户在大模型及AI工具,用它其实就是在不断地训练它,让它给出的答案更精准,才能更好地为大家所用。

互联网产生的数据内容越来越多,这一方面也促成了大模型的诞生。因为有足够的数据才能让大模型实现更精准的演练进化。而大模型其实就像人工智能AI的一个底层系统,类似微软的windows系统、谷歌的Android系统、苹果的iOS系统,现在手机电脑平板常用的就是这3个公司的底层系统。如果哪家公司的大模型系统占据了市场,以后所有的人工智能AI应用都会建立在此大模型基础之上,就能直接支撑各类开发应用。那么这家公司离占领AI市场就不远了,所以各个大厂都想抢占先机抓住风口,在大模型方面下注投资大力开发。如今大模型之间的竞争有点像2011年的团购网站“千团大战”,百家争鸣,竞争激烈,最后不知道又会剩下哪几家。

2005年左右还有人花七八千元买最新款的诺基亚手机,但现在诺基亚手机都很少见到了。2007年苹果让大家见识到什么是智能手机,2017年特斯拉让大家见识到什么是智能汽车,科技发展的历史在重演,也在更新。但技术路线一定是沿着“机械化-电气化-信息化﹣智能化”发展,而不是从“机械化”直接就跨越到“智能化”。现在还处在“电动化”往“信息化”过渡阶段,“信息化”往“智能化”发展的萌芽阶段,但目标一定是智能化。

如果按照100%的进度来说的话,现在人工智能的发展还是在1%的阶段,只能说在某些领域电脑机器比人工来干对应的活更快了一些、更精准了一些。目前大模型下的AI应用工具基本都是生成式服务,现在大家遇到问题也比较少用搜索引擎了,而是借助AI工具直接提问,让AI工具把问题答案直接呈现在用户眼前,但是有些提问AI生成的答案并没有那么贴切精准,甚至有些答非所问,真正智能还谈不上。

因为真正的智能是有自我意识、自我思维的,如学习、理解、推断、思考、改进、优化、规划等,并能伴有主动、超前、全面的特征

就像智能无人驾驶,需要对交通路况有超前、主动、全面的预判和处理,这样司机才能真正解放握住方向盘的手,甚至将来汽车都没有方向盘了,全程真正实现智能无人驾驶。但关键在于这是一次技术革命迭代的分水岭。哪家的大模型在市场中扎下了根,哪家的人工智能AI应用便会稳稳地吸引住用户。

当前对我国的大模型也是非常的看好,因为我们有大模型应用及其完善的产业环境,也有非常优秀的企业和工程师人才资源,而且本土应用市场也很大。大模型的应用极大地推动了人工智能技术的发展,促进了信息获取、处理和分析的方式,对科学研究、教育、医疗等领域产生了深远影响。相信大模型和人工智能AI会发展得越来越好。

既然大模型现在这么火热,各行各业都在开发搭建属于自己企业的私有化大模型,那么势必会需要大量大模型人才,同时也会带来大批量的岗位?“雷军曾说过:站在风口,猪都能飞起来”可以说大模型这对于我们来说就是一个机会,一个可以改变自身的机会,就看我们能不能抓住了。

那么,我们该如何学习大模型?

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

👉AGI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉AGI大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉AGI大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值