摘要
中医(TCM)在健康保护和疾病治疗中发挥着至关重要的作用,但其实际应用需要广泛的医学知识和临床经验。现有的中医大型语言模型(LLMs)在医学咨询和诊断的全面性以及基于辨证施治的准确性方面存在重大限制。为了解决这些问题,本研究构建了JingFang(JF):一种新型中医大型语言模型,展现了专家级的医学诊断和基于辨证施治的治疗能力。我们创新性地提出了一种多智能体动态协同思维链机制(MD-CCTM),用于医学咨询,使JF具备了有效且准确的诊断能力。此外,开发了症状代理和双阶段检索方案(DSRS),显著提升了JF基于辨证施治进行疾病治疗的能力。JF不仅促进了大型语言模型的应用,还推动了中医在人类健康保护和疾病治疗中的有效实践。
核心速览
研究背景
- 研究问题
:这篇文章要解决的问题是如何利用大型语言模型(LLMs)在中医诊断和辨证施治中的应用,解决现有中医LLMs在医疗咨询和诊断中的不足和不准确问题。
- 研究难点
:该问题的研究难点包括:中医诊断和辨证施治的复杂性和不确定性、缺乏大规模标注的多轮咨询数据、现有模型在提取患者主诉、挖掘症状、精确辨证施治和治疗方面的表现不佳、现有模型在适应性、可扩展性、灵活性和维护成本方面的局限性。
- 相关工作
:近年来,一些研究尝试将LLMs应用于中医领域,如Zhongjing、TCMChat、Qibo、BianCang、MedChatZH等,但这些研究在有效应用LLMs于中医诊断和治疗方面仍存在关键限制。
研究方法
这篇论文提出了JingFang(JF),一种具有专家级中医诊断和辨证施治能力的新型中医LLMs。具体来说,
-
多代理动态协作思维链机制(MD-CCTM):首先,提出了一种多代理动态协作思维链机制,使JF能够进行动态推理和显式决策。该机制通过建立多个具有不同中医专业的代理,使其动态协作,进行专业咨询和综合信息收集,以实现准确的辨证施治。
-
辨证代理和双阶段检索方案(DSRS):其次,开发了基于中医多级知识的辨证代理和双阶段检索方案,显著提高了JF在中医辨证施治中的能力。辨证代理通过预处理的多层次中医知识进行训练,DSRS则通过混合检索和提取中医知识,提供个性化治疗建议。
-
框架设计:最后,设计了JF框架,包括三个主要模块:中医咨询、中医辨证和中医治疗推荐。每个模块根据中医诊断和治疗的真实过程进行设计,遵循MD-CCTM和DSRS,以实现专业和准确的诊断和治疗。
实验设计
- 数据收集
:预处理了超过63,000条真实诊断数据条目,选择了超过43,000条高质量数据条目用于LLM微调。选择8,699条真实世界中医病例作为测试数据集,涵盖170种不同的证型。
- 实验设计
:为了全面评估JF的性能,选择了几个代表性的开源中医模型作为基线模型,并结合两种最先进的LLMs(GPT-4o和Qwen-Max)进行比较。设计了多种评估指标,确保全面和公平地评估性能。
- 样本选择
:随机选择了100个真实中医病例进行评估,这些病例涵盖了各种临床条件,全面反映了中医咨询的多样性和复杂性。
- 参数配置
:在微调过程中,使用了四个A6000 GPU(每个GPU配备48GB显存),并确定了最佳训练参数以确保损失函数的稳定收敛。
结果与分析
- 辨证准确性评估
:在中医辨证准确性任务中,JF在所有评估指标上均优于基线模型和通用模型。具体来说,JingFang-RoBERTa模型在精度、召回率和F1得分上分别达到了0.8185、0.8230和0.8186。
- 多轮咨询能力评估
:在多轮中医咨询能力评估中,JF在主动性、准确性、实用性和整体有效性四个维度上的得分均超过了8分,显著优于其他基线模型。
- 消融实验
:通过消融实验评估了JF框架中关键组件的有效性。结果表明,包含中医总代理的框架在多轮咨询中的综合性和针对性分别提高了89次和7981次,显著增强了咨询质量。
总体结论
这篇论文开发了JingFang,一种具有专家级中医诊断和辨证施治能力的新型中医LLMs。该模型不仅克服了现有中医模型的关键限制,还增强了LLMs在中医领域的应用。通过创新的MD-CCTM和DSRS,JF实现了动态推理和显式决策能力,显著提高了中医诊断和治疗的准确性和个性化程度。未来的研究可以进一步探索多代理协作机制的潜在应用,并开发先进的中医多模态LLMs,以促进中医更高效的应用。
论文评价
优点与创新
- 创新的框架
:提出了 JingFang(JF),一种基于专家级医学诊断和辨证施治的中医药大型语言模型(LLM)。该模型通过集成 LLM 代理、思维链(CoT)和检索增强生成(RAG)技术,显著提高了医学咨询和辨证施治的完整性和准确性。
- 多代理动态协作思维链机制(MDCCTM)
:发明了一种多代理动态协作思维链机制,使 JF 能够进行动态推理和显式决策,从而在医学咨询中具备全面和准确的诊断能力。
- 综合症状代理和双阶段检索方案(DSRS)
:开发了基于预处理的多层次中医药知识的症状代理和双阶段检索方案,显著提高了 JF 在实际应用中的中医药辨证施治能力。
- 全面的医学咨询能力
:通过多轮咨询过程,确保医生能够全面了解患者的病情,避免关键信息的遗漏,为准确诊断奠定基础。
- 个性化的治疗建议
:建立了双阶段检索方案,实现了粗粒度和细粒度层面的中医药知识混合检索和提取,提供了个性化和精确的治疗建议。
不足与反思
- 模型的局限性
:尽管 JF 在医学诊断和辨证施治方面表现出色,但在实际临床实践中,仍不能完全替代医生的角色。由于患者个体差异和真实医疗场景的复杂性,具体的诊断和治疗需要严格遵循医生的建议。
- 伦理问题
:当前 LLM 在该领域存在伦理问题,如内容不准确、偏见和毒性等,这些问题需要在未来的研究中加以解决。
关键问题及回答
问题1: JingFang(JF)在中医诊断和辨证施治中的核心机制是什么?
JingFang的核心机制是多代理动态协作思维链机制(MD-CCTM)。该机制通过建立多个具有不同中医专业的代理,使其动态协作,进行专业咨询和综合信息收集,以实现准确的辨证施治。具体步骤包括:
- 专家团队构建
:根据患者的症状和基本信息生成主诉,然后聚集相关的中医专家代理和中医总代理形成专家团队。
- 咨询构建
:每个专家代理基于其专业知识和患者的当前病情构建咨询思维链(CoT),并纳入多个后续问题以确保咨询过程的逻辑性和逐步深入。
- 咨询整合和评估
:总结代理整合并评估每个代理提供的咨询CoT,形成一个综合的咨询总结。
- 咨询分析和优化
:专家团队进一步分析总结的CoT,并提出修改建议,直到所有专家代理同意正式开始咨询。
- 多轮咨询
:基于优化的咨询CoT,中医咨询代理进行多轮咨询,以进一步明确患者病情并收集诊断和治疗所需的关键信息。
问题2: JingFang如何提高中医辨证施治的准确性?
JingFang通过以下两个方面显著提高中医辨证施治的准确性:
- 辨证代理
:开发了基于预处理的多层次中医知识的辨证代理。该代理通过大规模高质量的中医辨证数据集进行训练,能够自动提取与中医辨证相关的关键信息,从而提高辨证的准确性。
- 双阶段检索方案(DSRS)
:提出了DSRS,通过混合检索和提取中医知识,提供个性化治疗建议。该方案首先从中医处方数据库中筛选出与患者证型相关的候选处方,然后通过计算患者详细病史信息与候选处方的相似度,最终选择最匹配的三个病例作为推荐治疗方案。
问题3: 在多轮中医咨询能力评估中,JingFang的表现如何?
JingFang在多轮中医咨询能力评估中表现优异,具体表现如下:
- 综合性
:在主动性、准确性、实用性和整体有效性四个维度上的得分均超过了8分,显著优于其他基线模型。
- 互动性
:通过多轮咨询,JingFang能够全面收集患者的医疗信息,避免了关键信息的遗漏,确保了诊断的全面性和针对性。
- 优化能力
: JingFang在咨询过程中能够动态调整咨询重点,并根据患者的反馈不断优化咨询思维链(CoT),确保诊断的准确性和有效性。
这些结果表明, JingFang在多轮中医咨询中展现出显著的临床应用价值,能够提供更为专业和个性化的医疗服务。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓