这题我会!这是一个包含AI产品经理问题的备考文章,本文主要讲解AI产品经理的备考注意事项、真题展示、解题技巧及高效刷题方法,相信大家看完就一定能掌握技巧并且顺利通关!
一、AI产品经理面试问题展示(20道)
1. 请描述一下你过去负责的一个AI产品开发项目,包括项目的目标、过程和结果。
2. 在AI产品的开发过程中,你是如何处理数据质量问题?
3. 能否描述一下你在过去的项目中是如何管理团队、分配任务和管理项目的?
4. 对于AI产品的开发和优化,你通常使用哪些工具和平台?
5. 请谈一下你对机器学习算法的理解和掌握程度,包括但不限于深度学习、强化学习等。
6. 在AI产品的开发和优化过程中,你是如何考虑和处理伦理和隐私问题?
7. 请谈一下你对人工智能未来的看法和发展趋势。
8. 在AI产品的开发和优化过程中,你是如何考虑和处理数据偏见和歧视问题?
9. 请描述一下你在过去的项目中遇到的最大的挑战,以及你是如何解决的。
10. 对于AI产品的用户反馈和评价,你是如何处理和使用的?
11. 在AI产品的开发过程中,你是如何考虑和处理技术风险和不确定性的?
12. 能否描述一下你在过去的项目中是如何进行模型验证和评估的?
13. 在AI产品的开发和优化过程中,你是如何考虑和处理用户体验和可用性的?
14. 请谈一下你对人工智能和人类社会的关系的看法。
15. 在AI产品的开发过程中,你是如何考虑和处理技术可解释性和可信性的?
16. 请描述一下你在过去的项目中遇到的最大的挑战,以及你是如何解决的。
17. 对于AI产品的用户反馈和评价,你是如何处理和使用的?
18. 在AI产品的开发过程中,你是如何考虑和处理技术风险和不确定性的?
19. 在AI产品的开发和优化过程中,你是如何考虑和处理用户体验和可用性的?
20. 请描述一下你在过去的项目中是如何进行模型验证和评估的?
二、面试备考策略和技巧
1、熟悉STAR法则,组织关键词语
运用CAR或STAR方法提前大声练习。如果您在回答的过程中能牢记这些方法,你就不会偏离要点。
由于AI面试采用机器识别,所以回答的时候必须符合英文/中文的语句逻辑才能够轻易识别出来,一个很好用的方法就是:注意主谓宾的顺序并运用W-STAR法则或CAR法则来回答。
CAR原则以结构化的方式回答面试官的问题,包括背景(介绍当时的背景和状况)、行动(陈述你采取了哪些行为或措施)和结果(陈述你取得的专业结果)这三个部分。
STAR法则与之类似,包括状况或任务(描述具体的事件或给你的任务)、行动(说明你采取了哪些措施)和结果(你为公司实现的专业结果)这几个部分。这种回答方式不仅适用于AI面试,同样适用于专业面试、HR面试等,使用STAR里提到的四步法则组织思路,意味着你会给出一份非常详细的答案。
STAR法回答示例:
情境(situation):事情是在什么情况下发生的?
任务(task):描述一下你的任务,包括遇到的特殊问题或者考虑的情况
行动(action):为取得比较理想的结果你采取了哪些行动,使用了哪些关键技能。
行动(action):为取得比较理想的结果你采取了哪些行动,使用了哪些关键技能。
结果(result):你采取的行动取得了哪些结果?着重于你为公司、客户和同事创造的价值。
注意在组织语句的过程中要注意减少不重要的信息,使句子尽量简洁。
2、不要总是提及相同的经验
这可能会显得你的经历很匮乏,在准备面试前要多挖掘自己的实习经历、项目经历、校园经历,找到几个不同的例子,根据不同的问题相应地做些修改。
3、多参加面试模拟,复盘总结同类型题目
多参加面试模拟并进行复盘总结是一种非常有效的提高自身竞争力的方法。通过参加面试模拟,可以更好地了解自己在面试过程中的表现,并在之后的总结中找到改进的空间。这样的反思和总结能够帮助我们更好地应对同类型的题目。
三、面试的注意事项
面试前的工具准备:
1.要确保手机或电脑可以正常运行,自带的摄像头和麦克风可以正常使用;
2.设备在面试前充好电,或者直接插上电源;
3.关掉手机和任何电脑通知系统,确保在面试过程中不会出现干扰的声音;
4.面试场所一定要保证充足的环境光线。
面试前个人案例的准备:
1.了解历年考情,分析考察方向,有重点的准备;
2.汇总个人基础情况,准备个人案例的套用模板。通常HR考察的能力项为:责任心与使命感,抗压能力,分析与解决问题、领导能力、沟通能力、团队精神、创新能力等。
面试中的注意事项:
1、面试过程中,严格按照要求作答。(时间要求、中英文回答要求、多设问题)
2、注意语速语调,尽量说普通话。(AI识别内容,一定要表述清楚)
3、回答前分析考察点,有针对性回答。(AI面试的思考时间不会开摄像头,此时可以用手边纸笔写出回答框架,即可做到节约时间又能答中要点)因为有的AI面试,是AI自动打分的,如果你的回答结构清晰,符合逻辑,就会得高分。
4、回答时建议保持眼神交流,可适时微笑,心态上要做好自我沟通和自我提示。
PS:提前准备真的十分重要!!建议别做收藏家,不管是对于面试,还是技术提升,都应该好好学习呐!希望大家都能拿到心仪的offer!
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。