安全大模型两周年回顾:它如何重塑了安全行业?

安全大模型经历两年发展,带来的不仅是技术的突破,更是对整个网络安全行业价值体系的重构

安全大模型以指数级的效率提升、可量化的安全效果和快速的技术迭代,在钓鱼检测、流量检测、安全运营、数据安全等核心场景实现质的飞跃,颠覆了传统安全防御依赖 “规则+人力+设备” 的模式,让被动防御走向智能化的主动防护,让安全成为企业数字化转型的重要竞争力。

行业结构的动摇与重塑

生成式AI的出现加剧了攻防的不对等。攻击者利用AI技术批量生成钓鱼邮件、自动化漏洞利用,日均攻击尝试跃升至千万级······当网络攻击的门槛大幅降低、手段日趋复杂和隐蔽,攻防双方的平衡在短期内迅速被打破。

在多重挑战与困境下,安全大模型的出现打破了传统安全体系的效能瓶颈,给了行业一个新的破局点。

历经两年发展,如今安全大模型已规模化落地应用,它在效果、效率提升与安全体系重构等维度的表现,让我们看到,安全大模型已经成为了网络安全行业发展的新动能。

能力突破:

让具体的安全工作更“智能化”

一直以来,深信服始终坚持从安全的本质需求出发,专注于解决安全场景关键难题、提升具体的安全效果。

2023年5月18日,深信服安全GPT作为国内首个安全垂域大模型正式亮相。深信服对所有用户许下承诺:将持续优化提升GPT技术应用能力,期望把GPT能力赋予所有安全产品和服务,以智能化的安全,助力每一位用户“安全领先一步”

通过2年的持续演进,安全GPT实现了流量检测、钓鱼防御、运营提效、数据保护四大场景能力的效果突破,通过覆盖典型安全场景的智能防护能力,助力用户的安全体系从被动防御逐步转向智能化的主动防护。

实战效果跃迁:

从技术概念到可量化的安全价值

深信服一直坚持做“清醒的实践者”,我们深知,用户安全需要的不是“尽力而为” 的防御,而是可量化、可验证、可持续的安全效果。深信服安全GPT经历了国家级、省级实战攻防演练的洗礼,在各维度的效果数据都实现了“可量化”的跃升,给出了更多“颠覆性”解法,验证了安全大模型在高对抗实战场景中的价值。

安全GPT钓鱼检测大模型,在国家攻防演练中平均为每家客户检出7144封钓鱼邮件,精准率超过99%,平均为每家客户独报钓鱼邮件2400+

安全GPT运营大模型,在国家攻防演练中平均告警降噪率达99%,准确率达98%,自动化处置率超80%,用户运营人员平均每日仅需关注数十个事件。

安全GPT流量检测大模型,在国家攻防演练中无先验知识检出0day197个,检出Web流量威胁精准率达96.6%,针对高对抗攻击(如0day、1day,高混淆绕过的攻击)检出率达95% ,其中大量为传统引擎无法检测的独报告警。

安全GPT数据安全大模型在用户侧实战中,相较传统方法(人工+规则)分类分级准确率从50%提升到90%,效率提升40倍;相较传统引擎+人工分析,数据安全风险事件检出率提升40%

看看安全GPT在具体场景中的实战效果吧~

出于对“安全效果”的极致追求与对用户承诺的践行,今年年初,深信服将DeepSeek-R1的模型能力深度融入到安全GPT的AI工程架构中,形成了一套在安全领域融合DeepSeek-R1系列模型的完整技术框架,在钓鱼检测、数据安全、辅助运营、威胁调查和溯源等场景实现了安全场景理解能力的“再深一步”,交互问答体验全线升级,同时实战效果也进一步突破。

目前,深信服安全GPT已在500+用户真实环境中深度应用,支持50+头部用户高水平实战攻防,30+用户国家级实战演练。

从中交集团的智能威胁防护到河北高速的智能值守,从某部委的攻防演练SLA保障到金融行业的数据合规治理,深信服与越来越多的用户谱写出“双向奔赴”的故事,共同开辟了“面向未来”的新道路。

在前行过程中获得的一系列认可与肯定,也让我们不断提振信心,其中很多是与用户共同努力的成果。

  • 国内首个通过网信办双备案的安全大模型

  • 首个借助安全大模型技术全面赋能安全托管服务(MSS)的厂商

  • 数博会「2024优秀科技成果」奖

  • 入选中国信通院“安全守卫者计划·安全大模型优秀案例”

  • 获大禹水利科学技术奖科技进步一等奖

  • IDC实测多维度能力第一,七项能力远超业内平均水平!

    ……

看向更远的未来 

AI将如何重塑安全架构?

经历了730余天的社会化锤炼后,我们看到,如今安全大模型已经走过了理念验证期,进入考验实战效果的阶段,AI正在重塑着安全行业的价值评估体系

某用户提到:“过去我们关注防火墙规则更新时效,现在更关注模型持续进化能力;原先我们用堆人提升应急响应速度,现在较量的是自动化处置覆盖率。”

未来,安全体系的进化方向必然将从单场景赋能转向系统性重构——以“AI原生思维”重塑安全架构的基因,从数据底座到模型推理层、再到具体的场景应用层,每个环节都将被大模型深度重构。

为了承载数据融合和模型推理的双重调整,在安全体系中进行统一数据治理模型管理显得尤为重要,于是具备统一的数据底座和模型底座的深信服“AI安全平台”应运而生。

  1. 开放融合的数据治理能力 能够打破数据孤岛,通过精细的安全数据治理,确保数据的准确性与一致性,为上层模型分析提供高质量的数据支撑,让每一份数据都成为安全防护的有力武器。

  2. 推训一体的模型共创业务 允许用户利用私有数据对原生模型进行个性化调优和编排,提升模型在特定环境下的性能和效果。能够为各类安全模型提供稳定、高效的运行环境,确保模型推理快速精准。

为了提升用户体验,平台自带强大的兼容性与开放性,能与企业现有安全体系对接融合,与安全运营管理平台,检测、日志、资产等组件实现高效协同;同时可融入通用的AI应用体系,通过安全模型与智能体的共创,构建更丰富、更智能的安全生态。

未来,深信服将以 “AI安全平台”为基础,以底座层为根基,模型层为核心,应用层为抓手,通过无缝融合的开放生态,为用户打造更加智能、高效、全面的安全防护体系,让安全大模型重塑安全架构,向“AI安全新范式”持续演进。

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值