AI数学基础动画讲解 - 线性代数(向量)

线性代数(向量)
线性代数(向量)向量的重要性: 在人工智能(AI)领域中,向量(Vectors)扮演着至关重要的角色

向量在人工智能中无处不在,它们是数据表示、特征工程、线性代数、相似性度量、嵌入技术及优化算法的基础。

线性代数(向量)

  1. 数据表示:在机器学习和深度学习中,数据通常以向量的形式表示。例如,一个图像可以被转换为一个像素值向量,一个文本文档可以被转换为一个词向量。

  2. 特征工程:特征工程是机器学习中的一个关键步骤,它涉及从原始数据中提取有意义的特征。这些特征通常以向量的形式表示,并作为机器学习模型的输入。

  3. 线性代数:线性代数是机器学习和深度学习的数学基础,而向量是线性代数的基本元素。诸如矩阵乘法、点积、范数等运算在AI算法中非常常见,它们都是基于向量的操作。

  4. 相似性度量:在许多AI应用中,需要比较不同数据点之间的相似性。这可以通过计算向量之间的距离或相似度来实现,如欧几里得距离、余弦相似度等。

  5. 嵌入技术:嵌入技术(如Word2Vec、BERT等)将离散的数据(如单词、句子、图像等)映射到连续的向量空间中,从而捕捉它们之间的语义关系。

  6. 优化算法:许多AI算法使用优化算法(如梯度下降、随机梯度下降等)来最小化损失函数。这些算法通常涉及对向量(如权重向量)进行迭代更新。

线性代数(向量)

向量的含义: 向量是数学中的一个基本概念,用于表示具有大小和方向的量。N维空间和N维数组都可以用来表示向量。

N维空间表示: N维空间表示更侧重于向量的几何意义和空间位置,通常用于描述多维空间中的点或方向。

  • 定义:N维空间是一个具有N个独立坐标轴的几何空间。向量在N维空间中可以用一个包含N个坐标的列表(或元组)来表示,每个坐标对应一个维度。

  • 表示方法:在N维空间中,一个向量可以表示为 (v1, v2, ..., vN),其中 v1vN 是向量在N个维度上的坐标或分量。

N维数组表示: N元数组更侧重于数据的存储和操作,通常用于在计算机中处理多维数据。

  • 定义:N元数组(或N维数组)是一种数据结构,用于存储N个维度上的数据。在表示向量时,N元数组通常用于存储向量的N个分量。

  • 表示方法:N元数组通常通过嵌套的数组或特定的数据结构(如列表、元组或数组对象)来实现。一个N维向量可以表示为一个包含N个元素的数组,每个元素都是向量的一个分量。

向量的含义

向量的加法: 向量的加法是向量运算的基本操作之一。在N维空间中,两个向量的加法是通过将对应分量相加来完成的。

如果有两个N维向量AB,其中A = (a1, a2, ..., aN)B = (b1, b2, ..., bN)则它们的和C = A + B是一个新的N维向量,其分量是AB对应分量之和,即C = (a1+b1, a2+b2, ..., aN+bN)

向量的加法

向量的数乘: 向量的数乘是向量与一个实数相乘的运算。

给定一个N维向量A = (a1, a2, ..., aN)和一个实数k,向量Ak的数乘k * A是一个新的N维向量, 其每个分量都是原向量对应分量与k的乘积。即,k * A = (k * a1, k * a2, …, k * aN)。

向量的数乘

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

学习路线

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值