- 完成更新集成 TOOD 算法
- 其他 各种
主要特性🚀
🚀支持更多的YOLO系列算法模型改进(持续更新…)
YOLOAir 算法库汇总了多种主流YOLO系列检测模型,一套代码集成多种模型:
- 内置集成 YOLOv5 模型网络结构、YOLOv7 模型网络结构、 YOLOv6 模型网络结构、PP-YOLO 模型网络结构、PP-YOLOv2 模型网络结构、PP-YOLOE 模型网络结构、PP-YOLOEPlus 模型网络结构、YOLOR 模型网络结构、YOLOX 模型网络结构、ScaledYOLOv4 模型网络结构、YOLOv4 模型网络结构、YOLOv3 模型网络结构、YOLO-FaceV2模型网络结构、TPH-YOLOv5模型网络结构、SPD-YOLO模型网络结构、SlimNeck-YOLO模型网络结构、YOLOv5-Lite模型网络结构、PicoDet模型网络结构等持续更新中…
- 以上多种检测算法使用统一模型代码框架,集成在 YOLOAir 库中,统一任务形式、统一应用方式。🌟便于科研者用于论文算法模型改进,模型对比,实现网络组合多样化。🌟工程算法部署落地更便捷,包含轻量化模型和精度更高的模型,根据场景合理选择,在精度和速度俩个方面取得平衡。同时该库支持解耦不同的结构和模块组件,让模块组件化,通过组合不同的模块组件,用户可以根据不同数据集或不同业务场景自行定制化构建不同检测模型。
🚀支持加载YOLOv3、YOLOv4、YOLOv5、YOLOv7、YOLOR、Scaled_YOLO等网络的官方预训练权重进行迁移学习
🚀支持更多Backbone
- CSPDarkNet系列
- HorNet系列
- ResNet系列
- RegNet 系列
- ShuffleNet系列
- Ghost系列
- MobileNet系列
- EfficientNet系列
- ConvNext系列
- RepLKNet系列
- 重参数化系列
- RepVGG系列
- RepMLP系列
- ACNet系列
- RepConv系列
- Mobileone系列
- 自注意力Transformer系列
- MobileViT系列
- BoTNet-Transfomrer
- CoTNet-Transfomrer
- Swin-Transfomrer
- 以及其他trans系列
持续更新中🎈🚀🚀🚀
注: (YOLOAir(Beta版本内测)🔥 已经完成更新 20+ 种Transformer系列主干网络、多种MLP网络 以及 绝大部分重参数化结构模型网络)
🚀支持更多Neck
- FPN
- PANet
- RepPAN
- BiFPN等主流结构。
持续更新中🎈
🚀支持更多检测头Head
- YOLOv4、YOLOv5 Head检测头;
- YOLOR 隐式学习Head检测头;
- YOLOX的解耦合检测头Decoupled Head、DetectX Head;
- 自适应空间特征融合 检测头ASFF Head;
- YOLOv6-v2.0 Efficient decoupled head;
- YOLOv7检测头IAuxDetect Head, IDetect Head等;
- PPYOLOE Efficient Task-aligned head with DFL and VFL
- 其他不同检测头
🚀支持更多即插即用的注意力机制Attention
- 在网络任何部分即插即用式使用注意力机制
- Self Attention
- Contextual Transformer
- Bottleneck Transformer
- S2-MLP Attention
- SK Attention
- CBAM Attention
- SE Attention
- Coordinate attention
- NAM Attention
- GAM Attention
- ECA Attention
- Shuffle Attention
- CrissCrossAttention
- Coordinate attention
- SOCAttention
- SimAM Attention
持续更新中🎈
注: (YOLOAir(Beta版本内测)🔥 已经完成更新 30+ 种Attention注意力机制)
🚀更多空间金字塔池化结构
- SPP
- SPPF
- ASPP
- RFB
- SPPCSPC
- SPPFCSPC
- SimSPPF
持续更新中🎈
🚀支持更多Loss
- ComputeLoss
- ComputeLoss(v5)
- ComputeLoss(v6)
- ComputeLoss(X)
- ComputeLossAuxOTA(v7)
- ComputeLossOTA(v7)
- ComputeNWDLoss
- 其他Loss
🚀支持 Anchor-base 和 Anchor-Free
- 🌟 YOLOv5、YOLOv7、YOLOv3、YOLOv4、YOLOR、ScaledYOLOv4、PPYOLO、PPYOLOv2、Improved-YOLOv5、Improved-YOLOv7
- 🌟 YOLOX、YOLOv6 (最新Paper版本代码)、PPYOLOE、PPYOLOE+
🚀支持多种标签分配策略
- Multi Anchor策略
- YOLOv5 标签分配策略
- SimOTA 标签分配策略
- YOLOv7 标签分配策略
- Adaptive Training Sample Selection 标签分配策略
- Task Alignment Learning 标签分配策略
- 其他改进的标签分配策略
持续更新中🎈
🚀支持加权框融合(WBF)
🚀 内置多种网络模型模块化组件
Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, C3HB, C3RFEM, MultiSEAM, SEAM, C3STR, SPPCSPC, RepConv, BoT3, Air, CA, CBAM, Involution, Stem, ResCSPC, ResCSPB, ResXCSPB, ResXCSPC, BottleneckCSPB, BottleneckCSPC, ASPP, BasicRFB, SPPCSPC_group, HorBlock, CNeB,C3GC ,C3C2, nn.ConvTranspose2d, DWConvblock, RepVGGBlock, CoT3, ConvNextBlock, SPPCSP, BottleneckCSP2, DownC, BottleneckCSPF, RepVGGBlock, ReOrg, DWT, MobileOne,HorNet…等详细代码 ./models/common.py文件 内
🚀支持更多IoU损失函数
- CIoU
- DIoU
- GIoU
- EIoU
- SIoU
- alpha IOU
持续更新中🎈
🚀支持更多NMS
- NMS
- Merge-NMS
- Soft-NMS
- CIoU_NMS
- DIoU_NMS
- GIoU_NMS
- EIoU_NMS
- SIoU_NMS
- Soft-SIoUNMS、Soft-CIoUNMS、Soft-DIoUNMS、Soft-EIoUNMS、Soft-GIoUNMS等;
持续更新中🎈
🚀支持更多数据增强
- Mosaic、Copy paste、Random affine(Rotation, Scale, Translation and Shear)、MixUp、Augment HSV(Hue, Saturation, Value、Random horizontal flip
🚀 YOLO系列网络模型热力图可视化(GardCAM、GardCAM++等)
支持YOLOv3、、YOLOv3-SPP、YOLOv4、YOLOv5、YOLOR、YOLOv7Scaled_YOLOv4、TPH-YOLO、SPD-YOLO以及自定义网络模型等模型 (YOLOAir(Beta版本内测)🔥已支持)
🚀主流网络模型结构图汇总: 模型🔗
以上组件模块使用统一模型代码框架、统一任务形式、统一应用方式,模块组件化🚀 可以帮助用户自定义快速组合Backbone、Neck、Head,使得网络模型多样化,助力科研改进检测算法,构建更强大的网络模型。
说明: 以上主要特性支持 包括 Main版本 和 Beta版本,部分特性暂时只完成更新在 Beta 中,不是所有更新都直接在 Main 中,后续 Beta 版本内测之后逐渐加入到 Main版本中。
内置网络模型配置支持✨
🚀包括基于 YOLOv5、YOLOv7、YOLOX、YOLOR、YOLOv3、YOLOv4、Scaled_YOLOv4、Transformer、YOLO-FaceV2、PicoDet、YOLOv5-Lite、TPH-YOLOv5、SPD-YOLO等其他多种改进网络结构等算法模型的模型配置文件
11.更多其他Trick改进点持续更新,助力科研🎉
以上组件模块使用统一模型代码框架、统一任务形式、统一应用方式,模块组件化 可以帮助用户自定义快速组合Backbone、Neck、Head,使得网络模型多样化,助力科研改进检测算法,构建更强大的网络模型。
具体改进方式教程及原理(推荐🌟🌟🌟🌟🌟)
1.改进YOLOv5系列:YOLOv5_最新MobileOne结构换Backbone修改🌟
2.改进YOLOv5系列:Swin Transformer结构的修改🌟
4.改进YOLOv5系列:1.YOLOv5_CBAM注意力机制修改(其他注意力机制同理)🌟
5.改进YOLOv5系列:5.CotNet Transformer结构的修改🌟
6.改进YOLOv5系列:6.修改Soft-NMS,Soft-CIoUNMS,Soft-SIoUNMS,Soft-DIoUNMS,Soft-EIoUNMS,Soft-GIoUNMS…🌟
7.改进YOLOv5系列:7.改进DIoU-NMS,SIoU-NMS,EIoU-NMS,CIoU-NMS,GIoU-NMS🌟
8.改进YOLOv5系列:8.增加ACmix结构的修改,自注意力和卷积集成🌟
9.改进YOLOv5系列:9.BoTNet Transformer结构的修改)🍀
10.改进YOLOv5系列:10.最新HorNet结合YOLO应用首发! | ECCV2022出品,多种搭配,即插即用 | Backbone主干、递归门控卷积的高效高阶空间交互
11.改进YOLOv5系列:11.ConvNeXt结合YOLO | CVPR2022 多种搭配,即插即用 | Backbone主干CNN模型
YOLOv5、YOLOv7、YOLOR + 注意力机制一览
YOLOv5 + ShuffleAttention注意力机制
博客链接🔗🌟:改进YOLOv5系列:12.添加ShuffleAttention注意力机制
YOLOv5 + CrissCrossAttention注意力机制
博客链接🔗🌟:改进YOLOv5系列:13.添加CrissCrossAttention注意力机制
YOLOv5 + S2-MLPv2注意力机制
博客链接🔗🌟:改进YOLOv5系列:14.添加S2-MLPv2注意力机制
YOLOv5 + SimAM注意力机制
博客链接🔗🌟:改进YOLOv5系列:15.添加SimAM注意力机制
YOLOv5 + SKAttention注意力机制
博客链接🔗🌟:改进YOLOv5系列:16.添加SKAttention注意力机制
YOLOv5 + NAMAttention注意力机制
博客链接🔗🌟:改进YOLOv5系列:17.添加NAMAttention注意力机制
YOLOv5 + SOCA注意力机制
博客链接🔗🌟:改进YOLOv5系列:18.添加SOCA注意力机制
YOLOv5 + CBAM注意力机制
博客链接🔗🌟:改进YOLOv5系列:18.添加CBAM注意力机制
YOLOv5 + SEAttention注意力机制
博客链接🔗🌟:改进YOLOv5系列:19.添加SEAttention注意力机制
YOLOv5 + GAMAttention注意力机制
博客链接🔗🌟:改进YOLOv5系列:20.添加GAMAttention注意力机制
YOLOv5 + CA注意力机制
还有兄弟不知道网络安全面试可以提前刷题吗?费时一周整理的160+网络安全面试题,金九银十,做网络安全面试里的显眼包!
王岚嵚工程师面试题(附答案),只能帮兄弟们到这儿了!如果你能答对70%,找一个安全工作,问题不大。
对于有1-3年工作经验,想要跳槽的朋友来说,也是很好的温习资料!
【完整版领取方式在文末!!】
93道网络安全面试题
内容实在太多,不一一截图了
黑客学习资源推荐
最后给大家分享一份全套的网络安全学习资料,给那些想学习 网络安全的小伙伴们一点帮助!
对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。
😝朋友们如果有需要的话,可以联系领取~
1️⃣零基础入门
① 学习路线
对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。
② 路线对应学习视频
同时每个成长路线对应的板块都有配套的视频提供:
2️⃣视频配套工具&国内外网安书籍、文档
① 工具
② 视频
③ 书籍
资源较为敏感,未展示全面,需要的最下面获取
② 简历模板
因篇幅有限,资料较为敏感仅展示部分资料,添加上方即可获取👆