CVPR 2024最新论文分享┆YOLO-World:一种实时开放词汇目标检测方法

论文分享简介

本推文主要介绍了CVPR 2024上的一篇论文《YOLO-World: Real-Time Open-Vocabulary Object Detection》,论文的第一作者为Tianheng Cheng和Lin Song,该论文提出了一种开放词汇目标检测的新方法,名为YOLO-World。论文通过引入视觉-语言建模和大规模预训练解决了传统YOLO检测器在固定词汇检测中的局限性。论文提出的YOLO-World模型,通过Re-parameterizable Vision-Language Path Aggregation Network(RepVL-PAN)及区域-文本对比损失,增强了视觉与语言信息的交互,从而在零样本检测中表现出色。该方法在LVIS数据集上实现了35.4 AP,并保持了高效的推理速度,且在多个下游任务中表现优异。推文作者为李杨,审校为朱旺和陆新颖。

论文下载地址:

https://arxiv.org/pdf/2401.17270

开源代码地址:

https://github.com/AILab-CVC/YOLO-World

1. 会议介绍

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值