Stable Diffusion|轻松去除和增加图片中的物体

今天分享一个用Stable Diffusion将图片中不需要的物体去掉,然后将需要的内容添加到图片上的小教程。现在不管是在朋友圈还是在自媒体平台上,我们经常能够看到这样一句话“谁能帮我把什么什么P掉”,目前现在大家常用的方法就是用PS或其他的图片处理工具将图片中不需要的物体去掉,但这方法需要耗费大量时间,且效果可能不尽如人意。

用Stable Diffusion来处理这样的事会简单很多,它可以在图片中精确地去除不需要的物体也可以很自然的添加我们想要添加的物体,同时保持图像的真实和自然。

文章使用的AI绘画SD安装包、各种模型插件、提示词、AI人工智能学习资料都已经打包好放在网盘中了,有需要的小伙伴文末扫码自行获取。

1

前期准备

1. 本文需要用到ControlNet插件,如未安装的需要去安装一下,然后下载相关的模型。(安装方法就不一一介绍啦,如果有需要可以在文末扫码获取安装包及教程)

2. Inpaint Anything,用于给图片添加需要的物体,如未安装的需要去安装一下。

3. 准备一张需要处理的图片。

2

去除物体

1. 打开Stable Diffusion,“启用”ControlNet并且勾选“完美像素模式”,然后上传图片。

2. 在控制类型中选择“局部重绘”,预处理器选择“inpaint_global_harmoniou”,然后模型选择“control_v11p_sd15_inpaint”。

3. 可以适当地增加控制权重的值,也可以根据输出的结果来决定是否需要进行调整。在控制模式方面,可以选择“更偏向提示词”选项,这样能够更好地控制输出的结果。

### 使用 Stable Diffusion 模型进行图像编辑修复 #### 图像编辑流程 为了利用 Stable Diffusion 实现图像编辑功能,主要依赖于其强大的生成能力以及对输入条件的灵活响应机制。具体来说,在给定一张初始图片的情况下,可以通过调整提示词(prompt)、引导强度(guidance scale)以及其他参数来改变输出效果。 对于局部修改的需求,比如去除背景中的某个物体或是替换画面里的元素,则可采用 inpainting 技术[^3]。此方法允许指定掩码区域(mask),只对该区域内执行重绘操作而不影响其他部分;同时支持提供额外指导信息以更好地控制新内容样式。 ```python import torch from diffusers import StableDiffusionInpaintPipeline device = "cuda" model_id_or_path = "runwayml/stable-diffusion-v1-5" pipe = StableDiffusionInpaintPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16).to(device) prompt = "A red car in the forest" image = ... # PIL image of a car in a forest with white background where we want to replace it. mask_image = ... # PIL image black & white mask, where white pixels indicate what should be replaced. output = pipe(prompt=prompt, image=image, mask_image=mask_image).images[0] ``` 上述代码展示了如何加载预训练好的 Stable Diffusion Inpainting pipeline 并完成一次简单的实例化处理过程[^4]。 #### 图像修复策略 当面对破损照片恢复等问题时,除了常规的 inpaint 方式外,还可以探索基于 latent space 的修补方案。由于 LDM (Latent Diffusion Model) 特性使得在较低维度表示下更容易捕捉全局特征并保持连贯性,因此非常适合用于此类任务。实际应用中可能涉及到先将待修图转换至潜空间再做相应变换最后映射回像素域的过程。 值得注意的是,无论是哪种类型的编辑活动都建议预先准备好合适的 checkpoint 文件作为基础权重来源,并根据项目需求考虑是否进一步定制优化模型性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值