中文自然语言处理入门实战,Golang学习的三个终极问题及学习路线规划

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新Golang全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip1024b (备注go)
img

正文

第一次互联网大浪潮(1994年—2000年),以四大门户和搜索为代表,能做网站的工程师就可以被称为技术牛人;第二次互联网大浪潮(2001年—2008年),从搜索到 PC 端社交化网络的发展,我们的社交形态发生了根本的变化,从线下交流正转变为线上交流,大量的数据开始生成;第三次互联网大浪潮(2009年—2014年)PC 端互联网到移动互联网,此时各种 App 如雨后春笋般的冒出来,尽管后来有很多 App 都死了,但是移动互联网几乎颠覆了整个中国老百姓个人生活和商业形态,改变着我们每一个人的生活、消费、社交、出行方式等。

那第四次是什么呢?没错,第四次互联网大浪潮(2015—至今),是在前3次发展基础上,以大数据、云计算为背景发展起来的人工智能技术革命,分布式计算让大数据处理提速,而昔日陨落的巨星深度学习此刻再次被唤醒,并很快在图像和语音方面取得重大突破,但在自然语言方面却显得有些暗淡,突破并不是很大。尽管有很多人都去从事计算机视觉、语音等方面的工作,但随着 AI 的继续发展,NLP 方向正显得越来越重要。

接着,我们总结一下数据领域成就和挑战。

有一个不可否认的事实,当前从事互联网的人们已经制造出了海量的数据,未来还将继续持续,其中包括结构化数据、半结构化和非结构化数据。我发现,对于结构化数据而言,在大数据、云计算技术“上下齐心”的大力整合下,其技术基本趋向成熟和稳定,比如关系型数据库以及基于 Hadoop 的 HDFS 分布式文件系统、Hive 数据仓库和非关系型数据库 Hbase,以及 Elasticsearch 集群等数据存储的关系数据库或者 NoSQL,可以用来管理和存储数据;基于 MapReduce、Spark 和 Storm、Flink 等大数据处理框架可以分别处理离线和实时数据等。而半结构化、非结构化的数据,除了以 ELK 为代表的日志处理流程,过去在其它限定领域基于规则和知识库也取得了一定的成果,因其自身的复杂性,未来更多领域应用都具有很大的困难和挑战。

最后,我们看看国内外人工智能领域的工业现状。

今年5月19日有幸在北京国家会议中心参加了2018全球人工智能技术大会(GAITC)。在大会上,从中国科学院院士姚期智提出人工智能的新思维开始,其重点讲述了人工神经网络为代表的深度学习以及量子计算机将是未来发展的新思维;紧接着中国工程院院士李德毅分享了路测的学问——无人驾驶的后图灵测试,提出未来无人驾驶挑战应该是让无人驾驶具有司机的认知、思维和情感,而不是当前以 GPS 定位和动力学解决无人驾驶的问题;接下来微软全球资深副总裁王永东向我们展示的微软小冰,大家一起见证了微软小冰在社交互动、唱歌、作诗、节目主持和情感方面不凡的表现,而本人也真实测试了一下,小冰现在的表现已经非常优秀了。然而要达到一个成年自然人的水平,在某些方面还不能完全表现出人的特性。下面这幅图是微软小冰的个人介绍,有兴趣可以在微信公众号关注小冰,进行体验。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

人工智能产业的快速发展,资本市场大量资金涌入,促使中国人工智能领域投融资热度快速升温,这充分表明资本市场对于人工智能发展前景的认可。《2018年人工智能行业创新企业 Top100》发布,据榜单显示:进入2018年人工智能行业创新企业前十名的企业分别是:百度、阿里云、美图秀秀、华大基因、科大讯飞、微鲸科技、华云数据、爱驰亿维、青云、七牛云。作为人工智能的一个重要组成部分,自然语言处理(NLP)的研究对象是计算机和人类语言的交互,其任务是理解人类语言并将其转换为机器语言。在目前的商业场中,NLP 技术用于分析源自邮件、音频、文件、网页、论坛、社交媒体中的大量半结构化和非结构化数据,市场前景巨大。

为什么说未来数据领域的珠穆朗玛峰是中文自然语言处理?

正是基于上面对中国互联网发展的总结,对当前数据领域所面临的挑战以及资本市场对人工智能的认可分析,未来数据领域的重点是自然语言处理技术及其在智能问答、情感分析、语义理解、知识图谱等应用方面的突破。对于我们国内中文来说,如何更好的把前面所说的应用在中文处理上,显得更为重要和急迫,所以我认为未来数据领域的珠穆朗玛峰是中文自然语言处理 。

作为初学者,我们目前又面临这样的尴尬,网上大部分自然语言处理内容都是英文为基础,大多数人先是学好了英语的处理,回头来再处理中文,却发现有很大的不同,这样不仅让中文自然语言处理学习者走了弯路,也浪费了大量时间和精力。中文的处理比英文复杂的多,网上中文相关资料少之又少,国内纯中文自然语言处理书籍只有理论方面的,却在实战方面比较空缺,这让中文自然语言处理的研究开发工作感到举步维艰,很难下笔。

关于本达人课

本课程共包含19节(包括开篇词)。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

各小节之间并没有紧密耦合,但是整个内容还是遵循一定的开发流程。比如,按照中文语料处理的过程,在获取到语料之后开始分词,分词之后可以进行一些统计和关键字提取,并通过数据可视化手段熟悉和了解你的数据。紧接着通过词袋或者词向量,把文本数据转换成计算机可以计算的矩阵向量。后续从机器学习简单的有监督分类和无监督聚类入手,到深度学习中神经网络的应用,以及简易聊天机器人和知识图谱的构建。带你直观深入、高效地了解 NLP 开发的流程,全方位提升你的技术实力与思维方式。

因此,本达人课,作为中文自然语言处理初学者边学边实战的入门级教程,希望从中文实际出发,针对中文语料以小数据量的“简易版”实例,通过实战带大家快速掌握 NLP 在中文方面开发的基本能力。当然作为读者, 我默认你已经掌握 Python 编程语言和有一定的机器学习理论知识,当然不会也没关系,可以边学边做,还是那句老话:“只要功夫深铁杵磨成针”。

点击了解更多《中文自然语言处理入门》

课程寄语

无论是初入 AI 行业的新人,还是想转行成为 AI 领域的技术工程师,都可以从本场达人课中,收获中文自然语言处理相关知识。因为篇幅原因,本课程无法包含 NLP 的所有知识以及比较前沿的知识,但是我会在讲好每节课的前提下,尽量分享一些比较前沿的知识来作为补充。

第01课:中文自然语言处理的完整机器处理流程

2016年全球瞩目的围棋大战中,人类以失败告终,更是激起了各种“机器超越、控制人类”的讨论,然而机器真的懂人类吗?机器能感受到人类的情绪吗?机器能理解人类的语言吗?如果能,那它又是如何做到呢?带着这样好奇心,本文将带领大家熟悉和回顾一个完整的自然语言处理过程,后续所有章节所有示例开发都将遵从这个处理过程。

首先我们通过一张图(来源:网络)来了解 NLP 所包含的技术知识点,这张图从分析对象和分析内容两个不同的维度来进行表达,个人觉得内容只能作为参考,对于整个 AI 背景下的自然语言处理来说还不够完整。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

有机器学习相关经验的人都知道,中文自然语言处理的过程和机器学习过程大体一致,但又存在很多细节上的不同点,下面我们就来看看中文自然语言处理的基本过程有哪些呢?

获取语料

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注Go)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
31)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值