简单认识监督学习
Hi~大家好呀!经历了暑假期间短暂的接触机器学习的一些算法,之后又对深度学习、yolo系列有些了解,还尝试着去学习完成one-stage目标检测,但是由于基础知识的不扎实,很多时候都在补窟窿。
所以我打算从0开始学习机器学习算法,根据吴恩达老师的完整课程,将学习笔记上传于此。
“我认为今天机器学习创造的价值的99%是通过一种机器学习称为
监督学习
完成的。”
⭐️Supervised learning
监督机器学习是指学习x到y
或者 输入到输出
映射的算法。
监督学习的关键特征是,我们自己提供学习算法示例以供学习。
这其实就是,给定输入x的正确标签y
,机器通过查看正确
的输入x
和所需的标签y
,最终学会学习算法。即,当我们只是给出输入x
,机器就能够给出合理准确的预测
或者猜想
。
⭐️Examples
- input 电子邮件
- output 垃圾邮件/非垃圾邮件
通过监督学习,将为我们提供垃圾邮件过滤器
的功能。
- input 音频
- output 文本转录本
这时,监督学习,就为我们提供语音识别
的功能。
- input English
- output 其他语言
这时,就实现了机器翻译
。
或者,我们可以将图片
作为输入
,比如说,刚下线的手机,将其图片作为输入,让学习算法根据输入的手机产品的 图片来判断
是否存在划痕、凹痕或者其他缺陷。
这个称为目视检查
,它可以帮助制造商减少或者防止其产品中的缺陷。
在上面的这些例子中,我们首先需要输入大量的示例
,即输入x和与其相对应的正确答案即标签y来训练我们的模型
。
在模型从这些输入、输出(x和相对应的y)中学习之后
,它们可以采用全新的输入x
(它以前从未见过的东西),并尝试产生适当的对应输出y
。
⭐️Specific example
下面让我们更深入地研究一个具体的示例。
房价预测问题。
假如我们想根据房屋地大小来预测房价,并且我们已经收集到了一些过去的数据,并绘制了数据。
这里的横轴是以平方英尺为单位的房屋大小,纵轴是房子的价格。
有了这些数据,假如你的一位朋友想直到他们750平方英尺的房子的价格是多少。那通过学习算法如何帮助到你的朋友呢?
学习算法可能会通过指向拟合数据,通过直线上的数据以及直线以外的读数,可以大概预测到房子大概可以卖到150,000美元。
但拟合直线并不是我们可以使用的唯一学习算法。还有更好的可以应用于此。
比如,我们用下面的曲线进行拟合:
这样看起来,你的朋友的房子可以接近于200,000美元的价格。
给你的朋友选择最好的价格出售并不合适,我们应该关注的一件事是,如何选择最合适的直线或者曲线来适应这个数据,给出最合适的数据。
以这个例子简单说明,我们首先为算法提供了一个数据集,这个数据集中的每个x即房屋的面积,都对应着一个正确答案,即标签y。
学习算法的任务就是通过对此数据集的学习,有一些“经验”,产生更多这样的正确答案,当我们利用这个算法时,为这个算法提供一个房屋的面积,它可以根据“以往经验”预测出可能的出售价格。
⭐️两种类型的监督学习算法
🌙回归算法
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!