网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
使用了一个临时数组来存储合并的元素,空间复杂度O(n)。
- 稳定性
归并排序是一种稳定的排序方法。
算法名称 | 最好时间复杂度 | 最坏时间复杂度 | 平均时间复杂度 | 空间复杂度 | 是否稳定 |
---|---|---|---|---|---|
归并排序 | O(nlogn) | O(nlogn) | O(nlogn) | O(n) | 稳定 |
快速排序
快速排序原理
快速排序是面试最高频的排序算法。
快速排序和上面的归并排序一样,都是基于分治思想的,大概过程:
- 选出一个基准数,基准值一般取序列最左边的元素
- 重新排序序列,比基准值小的放在基准值左边,比基准值大的放在基准值右边,这就是所谓的分区
快速排序动图如下:
我们来看一个完整的快速排序图示:
快速排序代码实现
单边扫描快速排序
选择一个数作为基准数pivot,同时设定一个标记 mark 代表左边序列最右侧的下标位置,接下来遍历数组,如果元素大于基准值,无操作,继续遍历,如果元素小于基准值,则把 mark + 1 ,再将 mark 所在位置的元素和遍历到的元素交换位置,mark 这个位置存储的是比基准值小的数据,当遍历结束后,将基准值与 mark 所在元素交换位置。
public class QuickSort0 {
public void sort(int[] nums) {
quickSort(nums, 0, nums.length - 1);
}
public void quickSort(int[] nums, int left, int right) {
//结束条件
if (left >= right) {
return;
}
//分区
int partitonIndex = partion(nums, left, right);
//递归左分区
quickSort(nums, left, partitonIndex - 1);
//递归右分区
quickSort(nums, partitonIndex + 1, right);
}
//分区
public int partion(int[] nums, int left, int right) {
//基准值
int pivot = nums[left];
//mark标记初始下标
int mark = left;
for (int i = left + 1; i <= right; i++) {
if (nums[i] < pivot) {
//小于基准值,则mark+1,并交换位置
mark++;
int temp = nums[mark];
nums[mark] = nums[i];
nums[i] = temp;
}
}
//基准值与mark对应元素调换位置
nums[left] = nums[mark];
nums[mark] = pivot;
return mark;
}
}
双边扫描快速排序
还有另外一种双边扫描的做法。
选择一个数作为基准值,然后从数组左右两边进行扫描,先从左往右找到一个大于基准值的元素,将它填入到right指针位置,然后转到从右往左扫描,找到一个小于基准值的元素,将他填入到left指针位置。
public class QuickSort1 {
public int[] sort(int[] nums) {
quickSort(nums, 0, nums.length - 1);
return nums;
}
public void quickSort(int[] nums, int low, int high) {
if (low < high) {
int index = partition(nums, low, high);
quickSort(nums, low, index - 1);
quickSort(nums, index + 1, high);
}
}
public int partition(int[] nums, int left, int right) {
//基准值
int pivot = nums[left];
while (left < right) {
//从右往左扫描
while (left < right && nums[right] >= pivot) {
right--;
}
//找到第一个比pivot小的元素
if (left < right) nums[left] = nums[right];
//从左往右扫描
while (left < right && nums[left] <= pivot) {
left++;
}
//找到第一个比pivot大的元素
if (left < right) nums[right] = nums[left];
}
//基准数放到合适的位置
nums[left] = pivot;
return left;
}
}
快速排序性能分析
- 时间复杂度
快速排序的时间复杂度和归并排序一样,都是O(nlogn),但是这是最优的情况,也就是每次都能把数组切分到两个差不多大小的子数组。
如果出现极端情况,例如一个有序的序列[5,4,3,2,1] ,选基准值为5,那么需要切分n-1次才能完成整个快速排序的过程,这种情况时间复杂度就退化到了O(n²)。
- 空间复杂度
快速排序是一种原地排序的算法,空间复杂度是O(1)。
- 稳定性
快排的比较和交换是跳跃进行的,所以快排是一种不稳定的排序算法。
算法名称 | 最好时间复杂度 | 最坏时间复杂度 | 平均时间复杂度 | 空间复杂度 | 是否稳定 |
---|---|---|---|---|---|
快速排序 | O(nlogn) | O(n²) | O(nlogn) | O(1) | 不稳定 |
堆排序
堆排序原理
还记得我们前面的简单选择排序吗?堆排序是简单选择排序的一种升级版。
在学习堆排序之前,什么是堆呢?
完全二叉树是堆的一个比较经典的堆实现。
我们先来了解一下什么是完全二叉树。
简答说,如果节点不满,那它不满的部分只能在最后一层的右侧。
我们来看几个示例。
相信看了这几个示例,就清楚什么是完全二叉树
,什么是非完全二叉树
。
那堆
又是什么呢?
- 必须是完全二叉树
- 任一节点的值必须是其子树的最大值或最小值
- 最大值时,称为“最大堆”,也称大顶堆;
- 最小值时,称为“最小堆”,也称小顶堆。
因为堆是完全二叉树,所以堆可以用数组存储。
按层来将元素存储到数组对应位置,从下标1开始存储,可以省略一些计算。
好了,我们现在对堆已经有一些了解了,我们来看一下堆排序是什么样的呢?[2]
- 建立一个大顶堆
- 将堆顶元素(最大值)插入数组末尾
- 让新的最大元素上浮到堆顶
- 重复过程,直到排序完成
动图如下(来源参考[1]):
关于建堆,有两种方式,一种是上浮,一种是下沉。
上浮是什么呢?就是把子节点一层层上浮到合适的位置。
下沉是什么呢?就是把堆顶元素一层层下沉到合适的位置。
上面的动图,使用的就是下沉的方式。
堆排序代码实现
public class HeapSort {
public void sort(int[] nums) {
int len = nums.length;
//建堆
buildHeap(nums, len);
for (int i = len - 1; i > 0; i--) {
//将堆顶元素和堆末元素调换
swap(nums, 0, i);
//数组计数长度减1,隐藏堆尾元素
len--;
//将堆顶元素下沉,使最大的元素浮到堆顶来
sink(nums, 0, len);
}
}
/\*\*
\* 建堆
\*
\* @param nums
\* @param len
\*/
public void buildHeap(int[] nums, int len) {
for (int i = len / 2; i >= 1; i--) {
//下沉
sink(nums, i, len);
}
}
/\*\*
\* 下沉操作
\*
\* @param nums
\* @param index
\* @param end
\*/
public void sink(int[] nums, int index, int end) {
//左子节点下标
int leftChild = 2 \* index + 1;
//右子节点下标
int rightChild = 2 \* index + 2;
//要调整的节点下标
int current = index;
//下沉左子树
if (leftChild < end && nums[leftChild] > nums[current]) {
current = leftChild;
}
//下沉右子树
if (rightChild < end && nums[rightChild] > nums[current]) {
current = rightChild;
}
//如果下标不相等,证明调换过了
if (current!=index){
//交换值
swap(nums,index,current);
//继续下沉
sink(nums,current,end);
}
}
public void swap(int[] nums, int i, int j) {
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
}
堆排序性能分析
- 时间复杂度
堆排的时间复杂度和快排的时间复杂度一样,都是O(nlogn)。
- 空间复杂度
堆排没有引入新的空间,原地排序,空间复杂度O(1)。
- 稳定性
堆顶的元素不断下沉,交换,会改变相同元素的相对位置,所以堆排是不稳定的。
算法名称 | 时间复杂度 | 空间复杂度 | 是否稳定 |
---|---|---|---|
堆排序 | O(nlogn) | O(1) | 不稳定 |
计数排序
文章开始我们说了,排序分为比较类和非比较类,计数排序是一种非比较类的排序方法。
计数排序是一种线性时间复杂度的排序,利用空间来换时间,我们来看看计数排序是怎么实现的吧。
计数排序原理
计数排序的大致过程[4]:
- 找出待排序的数组中最大和最小的元素
- 统计数组中每个值为i的元素出现的次数,存入数组arr的第i项;
- 对所有的计数累加(从arr中的第一个元素开始,每一项和前一项相加);
- 反向填充目标数组:将每个元素i放在新数组的第arr(i)项,每放一个元素就将arr(i)减去1。
我们看一下动图演示(来自参考[4]):
我们拿一个数组来看一下完整过程:[6,8,5,1,2,2,3]
- 首先,找到数组中最大的数,也就是8,创建一个最大下标为8的空数组arr
- 遍历数据,将数据的出现次数填入arr对应的下标位置中
- 然后输出数组元素的下标值,元素的值是几,就输出几次
计数排序代码实现
public class CountSort {
public void sort(int[] nums) {
//查找最大值
int max = findMax(nums);
//创建统计次数新数组
int[] countNums = new int[max + 1];
//将nums元素出现次数存入对应下标
for (int i = 0; i < nums.length; i++) {
int num = nums[i];
countNums[num]++;
nums[i] = 0;
}
//排序
int index = 0;
for (int i = 0; i < countNums.length; i++) {
while (countNums[i] > 0) {
nums[index++] = i;
countNums[i]--;
}
}
}
public int findMax(int[] nums) {
int max = nums[0];
for (int i = 0; i < nums.length; i++) {
if (nums[i] > max) {
max = nums[i];
}
}
return max;
}
}
OK,乍一看没啥问题,但是仔细想想,其实还是有些毛病的,毛病在哪呢?
- 如果我们要排序的元素有0怎么办呢?例如
[0,0,5,2,1,3,4]
,arr初始都为0,怎么排呢?
这个很难解决,有一种办法,就是计数的时候原数组先加10,[-1,0,2],排序写回去的时候再减,但是如果刚好碰到有-10这个元素就凉凉。
- 如果元素的范围很大呢?例如
[9992,9998,9993,9999]
,那我们申请一个10000个元素的数组吗?
这个可以用偏移量解决,找到最大和最小的元素,计算偏移量,例如[9992,9998,9993,9999]
,偏移量=9999-9992=7,我们只需要建立一个容量为8的数组就可以了。
解决第二个问题的版本如下:
public class CountSort1 {
public void sort(int[] nums) {
//查找最大值
int max = findMax(nums);
//寻找最小值
int min = findMin(nums);
//偏移量
int gap = max - min;
//创建统计次数新数组
int[] countNums = new int[gap + 1];
//将nums元素出现次数存入对应下标
for (int i = 0; i < nums.length; i++) {
int num = nums[i];
countNums[num - min]++;
nums[i] = 0;
}
//排序
int index = 0;
for (int i = 0; i < countNums.length; i++) {
while (countNums[i] > 0) {
nums[index++] = min + i;
countNums[i]--;
}
}
}
public int findMax(int[] nums) {
int max = nums[0];
for (int i = 0; i < nums.length; i++) {
if (nums[i] > max) {
max = nums[i];
}
}
return max;
}
public int findMin(int[] nums) {
int min = nums[0];
for (int i = 0; i < nums.length; i++) {
if (nums[i] < min) {
min = nums[i];
}
}
return min;
}
}
计数排序性能分析
- 时间复杂度
我们整体运算次数是n+n+n+k=3n+k,所以使劲复杂度是O(n+k)。
- 空间复杂度
引入了辅助数组,空间复杂度O(n)。
- 稳定性
我们的实现实际上是不稳定的,但是计数排序是有稳定的实现的,可以查看参考[1]。
同时我们通过实现也发现,计数排序实际上不适合有负数的,元素偏移值过大的数组。
桶排序
桶数组可以看做计数排序的升级版,它把元素分到若干个桶
中,每个桶中的元素再单独排序。
桶排序原理
桶排序大概的过程:
- 设置一个定量的数组当作空桶;
- 遍历输入数据,并且把元素一个一个放到对应的桶里去;
- 对每个不是空的桶进行排序;
- 从不是空的桶里把排好序的数据拼接起来。
桶排序动图如下(动图来源参考[1]):
我们上面说了,计数排序不适合偏移量过大的数组,我们拿一个偏移量非常大的数组[2066,566,166,66,1066,2566,1566]
为例,来看看桶排序的过程。
- 创建6个桶,分别存储0-500,500-1000,1000-1500,1500-2000,2000-2500,2500-3000的元素
- 遍历数组,将元素分别分配到对应的桶中
- 桶中元素排序,这里我们明显只用排序第一个桶
- 将桶中的元素依次取出,取出的元素就是有序的了
桶排序代码实现
桶排序的实现我们要考虑几个问题:
- 桶该如何表示?
- 桶的数量怎么确定?
- 桶内排序用什么方法?
我们来看一下代码:
public class BucketSort {
public void sort(int[] nums) {
int len = nums.length;
int max = nums[0];
int min = nums[0];
//获取最大值和最小值
for (int i = 1; i < len; i++) {
if (nums[i] > max) {
max = nums[i];
}
if (nums[i] < min) {
min = nums[i];
}
}
//计算步长
int gap = max - min;
//使用列表作为桶
List<List<Integer>> buckets = new ArrayList<>();
//初始化桶
for (int i = 0; i < gap; i++) {
buckets.add(new ArrayList<>());
}
//确定桶的存储区间
int section = gap / len - 1;
//数组入桶
for (int i = 0; i < len; i++) {
//判断元素应该入哪个桶
int index = nums[i] / section - 1;
if (index < 0) {
index = 0;
}
//对应的桶添加元素
buckets.get(index).add(nums[i]);
}
//对桶内的元素排序
for (int i = 0; i < buckets.size(); i++) {
//这个底层调用的是 Arrays.sort
// 这个api不同情况下可能使用三种排序:插入排序,快速排序,归并排序,具体看参考[5]
Collections.sort(buckets.get(i));
}
//将桶内的元素写入原数组
int index = 0;
for (List<Integer> bucket : buckets) {
for (Integer num : bucket) {
nums[index] = num;
index++;
}
}
}
}
桶排序性能分析
- 时间复杂度
桶排序最好的情况,就是元素均匀分配到了每个桶,时间复杂度O(n),最坏情况,是所有元素都分配到一个桶中,时间复杂度是O(n²)。平均的时间复杂度和技术排序一样,都是O(n+k)。
- 空间复杂度
桶排序,需要存储n个额外的桶,桶中又要存储k个元素,所以空间复杂度是O(n+k)。
- 稳定性
稳定性得看桶中排序用的什么排序算法,桶中用的稳定排序算法,那么就是稳定的。用的不稳定的排序算法,那么就是不稳定的。
基数排序
基数排序原理
基数排序是一种非比较型的排序方法。
它的基本原理是将元素按照位数切割成不同的数字,然后按照每个位数进行比较。
大概过程:
- 取得数组中的最大数,并取得位数;
- arr为原始数组,从最低位开始取每个位组成radix数组
- 对radix进行计数排序(利用计数排序适用于小范围数的特点)
动图图示如下(来源参考[1]):
基数排序可以说是桶排序的一个进化,我们以[ 892, 846, 821, 199, 810,700 ]
来看一下基数排序的过程:
- 创建十个桶用来存储元素
- 根据个位数,将元素分别分配到不同的桶中
- 然后将桶中的元素依次取出
- 接下来排十位数,根据十位数分配桶,再依次取出
- 接下来百位数
基数排序代码实现
public class RadixSort {
public void sort(int[] nums) {
int len = nums.length;
//最大值
int max = nums[0];
for (int i = 0; i < len; i++) {
if (nums[i] > max) {
max = nums[i];
}
}
//当前排序位置
int location = 1;
//用列表实现桶
List<List<Integer>> buckets = new ArrayList<>();
//初始化size为10的一个桶
for (int i = 0; i < 10; i++) {
buckets.add(new ArrayList<>());
}
while (true) {
//元素最高位数
int d = (int) Math.pow(10, (location - 1));
//判断是否排完
if (max < d) {
break;
}
//数据入桶
for (int i = 0; i < len; i++) {
//计算余数 放入相应的桶
int number = ((nums[i] / d) % 10);
buckets.get(number).add(nums[i]);
}
//写回数组
int nn = 0;
for (int i = 0; i < 10; i++) {
int size = buckets.get(i).size();
for (int ii = 0; ii < size; ii++) {
nums[nn++] = buckets.get(i).get(ii);
}
buckets.get(i).clear();
}
location++;
}
}
}
基数排序性能分析
- 时间复杂度
时间复杂度O(n+k),其中n数组元素个数,k为数组元素最高位数。
- 空间复杂度
和桶排序一样,因为引入了桶的存储空间,所以空间复杂度O(n+k)。
- 稳定性
因为基数排序过程,每次都是将当前位数是哪个相同数值的元素统一分配到桶中,并不交换位置,所以基数排序是稳定的。
总结
这篇文章,我们学习了十大基本排序,来简单总结一下。
首先最简单的冒泡排序
:两层循环,相邻交换;
选择排序
:未排序和排序两分,从未排序序列中寻找最小的元素,放在排序序列末尾;
插入排序
:斗地主摸牌思维,把一个元素插入到有序序列合适位置;
希尔排序
:插入排序plus,先把序列分割,再分别插入排序;
归并排序
:分治思想第一弹,先将序列切分,再在合并过程排序;
快速排序
:分治思想第二弹,基准数分区原序列,小的放左边,大的放右边;
堆排序
:选择排序plus,建立大顶堆,堆顶元素(最大值)插入序列末尾,再让新的元素上浮。
计数排序
:空间换时间第一弹,利用新数组,统计对应元素出现次数,输出新数组下标,原数组完成排序;
桶排序
:空间换时间第二弹,将原数组的元素分到若干个桶,每个桶单独排序,再把桶里元素拼起来;
基数排序
:空间换时间第三弹,桶排序plus,根据数位,把元素分桶,然后按每个位数比较。
十大基本排序性能汇总:
排序方法 | 时间复杂度(平均) | 时间复杂度(最坏) | 时间复杂度(最好) | 空间复杂度 | 稳定性 |
---|---|---|---|---|---|
冒泡排序 | O(n²) | O(n²) | O(n) | O(1) | 稳定 |
选择排序 | O(n²) | O(n²) | O(n²) | O(1) | 不稳定 |
插入排序 | O(n²) | O(n²) | O(n) | O(1) | 稳定 |
希尔排序 | O(n^(1.3-2)) | O(n²) | O(n) | O(1) | 不稳定 |
归并排序 | O(nlogn) | O(nlogn) | O(nlogn) | O(n) | 稳定 |
快速排序 | O(nlogn) | O(n²) | O(nlogn) | O(nlogn) | 不稳定 |
堆排序 | O(nlogn) | O(nlogn) | O(nlogn) | O(1) | 不稳定 |
计数排序 | O(n+k) | O(n+k) | O(n+k) | O(n) | 稳定 |
桶排序 | O(n+k) | O(n²) | O(n) | O(n+k) | 稳定 |
基数排序 | O(n*k) | O(n*k) | O(n*k) | O(n+k) | 稳定 |
简单的事情重复做,重复的事情认真做,认真的事情有创造性地去做。
我是三分恶,一个能文能武的全栈开发。
点赞
、关注
不迷路,咱们下期见!
参考:
[2]. https://github.com/chefyuan/algorithm-base
[2].《数据结构与算法分析》
给大家的福利
零基础入门
对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。
同时每个成长路线对应的板块都有配套的视频提供:
因篇幅有限,仅展示部分资料
网络安全面试题
绿盟护网行动
还有大家最喜欢的黑客技术
网络安全源码合集+工具包
所有资料共282G,朋友们如果有需要全套《网络安全入门+黑客进阶学习资源包》,可以扫描下方二维码领取(如遇扫码问题,可以在评论区留言领取哦)~
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!