2024年最全VulBG 构建行为图加强基于深度学习的漏洞检测模型

  • 行为图构建: 鉴于函数的源代码,使用切片和代码嵌入来获取函数的行为。通过对行为进行聚类,得到一组中心点行为,然后根据中心点行为和行为的相似性构建行为图。
  • **行为特征提取:**对每个函数节点进行图嵌入,将其转换为向量,然后使用多层感知器(MLP)进一步处理函数的行为特征。
  • **模型融合:**采用了模型融合的方法,将行为特征与(TextCNN、ASTGRU、CodeBERT、Devign 和 VulCNN)等模型提取的特征结合起来,共同进行分类。
  • 图 3 VulBG 的基本架构
3.1 行为图构建

行为图旨在表示函数间的联系,由函数节点和行为节点质心(切片)构成,行为节点表示为聚类的质心,函数节点表示该行为的所属函数。

图 4 行为图示例

图 4 为一个行为图的实例。其中 B1、B2、…、B7 为各个函数的行为;CB1、CB2、CB3 为多个相似行为通过聚类后得到的质心;F1、F2、F3 为函数。用质心表示所有相似行为,并将函数与质心相连得到最终的行为图,其中 边 基于函数行为到质心的欧几里得距离 设置的权重。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值