% 参数设置
SNR = 20; % 信噪比(dB)
N = 1e6; % 样本数
% 对数正态分布
mu = 0; sigma = 1;
x_lognormal = lognrnd(mu, sigma, 1, N);
figure; histogram(x_lognormal, 100); title(‘对数正态分布’);
% 高斯分布
x_gaussian = randn(1, N);
figure; histogram(x_gaussian, 100); title(‘高斯分布’);
% 瑞利分布
sigma_rayleigh = sqrt(2)/sqrt(pi);
x_rayleigh = raylrnd(sigma_rayleigh, 1, N);
figure; histogram(x_rayleigh, 100); title(‘瑞利分布’);
% 莱斯分布
K = 1; omega = 1;
x_rice = rician(K, omega, 1, N);
figure; histogram(x_rice, 100); title(‘莱斯分布’);
% 威布尔分布
a = 2; b = 1;
x_weibull = wblrnd(a, b, 1, N);
figure; histogram(x_weibull, 100); title(‘威布尔分布’);
% 对比分布特性
figure;
subplot(2,3,1); hist(x_lognormal, 100); title(‘对数正态分布’);
subplot(2,3,2); hist(x_gaussian, 100); title(‘高斯分布’);
subplot(2,3,3); hist(x_rayleigh, 100); title(‘瑞利分布’);
subplot(2,3,4); hist(x_rice, 100); title(‘莱斯分布’);
subplot(2,3,5); hist(x_weibull, 100); title(‘威布尔分布’);
% 拟合分布参数
[f_lognormal,x_lognormal] = ksdensity(x_lognormal);
[f_gaussian,x_gaussian] = ksdensity(x_gaussian);
[f_rayleigh,x_rayleigh] = ksdensity(x_rayleigh);
[f_rice,x_rice] = ksdensity(x_rice);
[f_weibull,x_weibull] = ksdensity(x_weibull);
figure;
plot(x_lognormal,f_lognormal,‘r-’); hold on;
plot(x_gaussian,f_gaussian,‘g-’);
plot(x_rayleigh,f_rayleigh,‘b-’);
plot(x_rice,f_rice,‘m-’);
plot(x_weibull,f_weibull,‘c-’);
legend(‘对数正态分布’,‘高斯分布’,‘瑞利分布’,‘莱斯分布’,‘威布尔分布’);
title(‘各分布概率密度函数对比’);
这段代码主要包括以下步骤:
设置仿真参数,包括信噪比和样本数。
分别生成对数正态分布、高斯分布、瑞利分布、莱斯分布和威布尔分布的样本数据。
绘制每种分布的直方图,直观展示其统计特性。
将五种分布的直方图放在一个子图中进行比较。
使用核密度估计(ksdensity)拟合每种分布的概率密度函数,并在同一幅图中绘制对比。
通过这段代码,我们可以很直观地了解这几种常见的统计分布在雷达地海杂波建模中的应用。对比分析它们的概率密度函数特性,有助于选择合适的分布模型来拟合实际测量数据。