摸索DeepSeek:入门到精通

聊聊DeepSeek,这玩意儿是GPT系列中的一颗新星。它不仅仅是个语言模型,更像是个能对话的超级大脑。今天咱就来扒一扒DeepSeek,看看它是怎么玩转各种任务的。

什么是DeepSeek?

DeepSeek,简单说就是个超厉害的语言模型。它通过学习大量的文本数据,学会了如何理解和生成人类语言。这就像给电脑装上了“读心术”,让它能够猜出你想表达啥,并且还能给出相应的回答。不过呢,它也不是万能的,有时候也会犯迷糊,这就需要咱们使用者多动脑子去引导它了。

安装与配置

准备环境

想用DeepSeek,先得把环境搭好。Linux系统下推荐使用Python3.8以上版本。安装Python可以这么来:

sudo apt update && sudo apt install python3.8   

接着,别忘了pip,这是Python的包管理工具,用来安装第三方库的。

sudo apt install python3-pip   

安装DeepSeek

有了环境,接下来就是安装DeepSeek。虽然官方提供了多种安装方式,但最简单的还是通过pip:

pip install deepseek   

温馨提示:安装过程中要是遇到权限问题,记得加--user选项哦。

基础使用技巧

发起请求

想要和DeepSeek交流,发起请求是最基础的一步。下面这个例子展示了如何向DeepSeek提问并获取答案:

import deepseek      response = deepseek.ask("宇宙有多大?")   print(response)   

运行结果会是一段关于宇宙大小的描述,不过这取决于DeepSeek的知识库更新程度。

处理复杂查询

对于一些复杂的查询,比如要求分析一段代码或者设计一个算法,就需要更细致地构造请求。这里有个小窍门,将大问题拆分成几个小问题逐步询问,往往能得到更好的效果。

questions = ["这段代码的功能是什么?", "有没有优化的空间?"]   for q in questions:       print(deepseek.ask(q))   

高级应用探索

自定义知识库

想让DeepSeek成为某个领域的专家?试试自定义知识库吧。首先收集相关领域的文档、论文等资料,然后通过DeepSeek提供的API上传这些资料,训练自己的模型版本。

结合Shell脚本自动化任务

在Linux环境下,结合Shell脚本能让DeepSeek的应用场景更加广泛。比如,写个小脚本定时询问DeepSeek最新的技术动态,并自动整理成报告。

#!/bin/bash   echo "最新AI趋势:" > report.txt   deepseek_ask "最近AI领域有哪些新进展?" >> report.txt   

温馨提示:别忘了给脚本执行权限哦(chmod +x script.sh)。

实战中的注意事项

使用DeepSeek时,得注意它的局限性。比如说,对事实性问题的回答有时不够准确,因为它的知识库可能不是最新的。此外,在处理敏感信息时也要格外小心,确保数据安全。

通过今天的分享,希望你对DeepSeek有了更深的认识。无论是作为个人助手还是专业工具,掌握好它的用法都能带来不少便利。记得多多实践,才能更好地驾驭这个强大的工具。

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 使用 DeepSeek 框架训练自定义模型 为了利用 DeepSeek 框架来训练自定义模型,可以遵循一系列特定的操作流程。这些操作不仅涉及环境配置还包括具体的数据准备以及训练过程中的参数调整。 #### 环境设置与依赖安装 首先需确保本地开发环境中已正确设置了 Python 虚拟环境,并安装必要的库和工具包。对于 DeepSeek 特定的需求来说,可以通过 pip 或 conda 安装所需的软件包[^4]。 ```bash pip install transformers datasets torch deepspeed ``` #### 下载预训练模型 接着要获取预先训练好的基础模型作为起点。这里提到可以从 Hugging Face 平台下载 `deepseek-vl-7b-chat` 这样的预训练模型至指定目录下: ```bash huggingface-cli download deepseek-ai/deepseek-vl-7b-chat --local-dir ./models ``` 此命令会把所需文件保存到当前路径下的 models 文件夹内。 #### 数据集准备 准备好用于微调的数据集非常重要。数据应当被整理成适合输入给定架构的形式,通常这意味着将文本转换为 token ID 序列以及其他可能需要的特征向量。Hugging Face 的 Datasets 库提供了方便易用的功能来进行这项工作。 #### 配置 Deepspeed 训练脚本 Deepspeed 是一个高效的分布式训练加速器,在不修改原有 PyTorch 代码的基础上提供显著性能提升。当采用 Zero Redundancy Optimizer (ZeRO) 技术时尤其如此;该方法允许更高效地管理内存资源而无需重写现有代码逻辑[^1]。 创建一个新的 Python 脚本来加载之前下载过的模型实例化 Trainer 类并传递适当参数以启用 ZeRO: ```python from transformers import AutoModelForCausalLM, TrainingArguments, Trainer import deepspeed model_name_or_path = "./models" training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, fp16=True, save_steps=500, logging_dir='./logs', ) # Initialize the model from local directory. model = AutoModelForCausalLM.from_pretrained(model_name_or_path) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, # Replace with actual dataset object. data_collator=data_collator, # If needed. tokenizer=tokenizer, # Tokenizer instance used during preprocessing. optimizers=(None, None), # Let Deepspeed handle optimizer creation internally. deepspeed="ds_config.json", # Path to a JSON file containing configuration options for Deepspeed. ) ``` 注意上述代码片段中指定了 `"ds_config.json"` 来告诉 trainer 如何初始化 Deepspeed 组件。这个配置文件应该包含有关激活哪些优化特性的细节说明,比如是否开启 stage 2/3 的 ZeRO 功能等。 #### 开始训练 最后一步就是启动实际的训练进程了。只需简单调用 `Trainer.train()` 方法即可触发整个计算管道运行起来直至完成预定轮次的学习迭代。 ```python if __name__ == "__main__": trainer.train() ``` 通过以上步骤就可以基于 DeepSeek 框架有效地开展针对特定领域任务定制化的大型语言模型训练项目了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值