2024人工智能指数报告,斯坦福大学

Artificial Intelligence Index Report 2024——Ground the conversation about AI in data

**2024人工智能指数报告——**以数据为基础讨论人工智能

来源:Stanford University for Human-Centered Artificial Intelligence

2024年《人工智能指数报告》第七版是该系列迄今为止最为全面的版本,今年该报告扩大了研究范围,更广泛地覆盖了人工智能领域的一些关键趋势,例如人工智能的技术进步、公众对这项技术的看法,以及围绕其发展的地缘政治动态。本版报告包含了更多的原始数据,介绍了关于人工智能训练成本的新估算,以及一个全新的章节,专门探讨人工智能对科学和医学的影响。

《人工智能指数报告》追踪、整理、提炼并可视化与人工智能相关的数据。该报告主张提供无偏见、经过严格审查、来源广泛的可靠数据,以便政策制定者、研究人员、企业高管、记者以及广大公众能够更全面、更深入地理解人工智能这一复杂领域。

该报告今年的版本在规模、范围和深度上都超越了以往的所有版本,反映了人工智能在我们生活中日益重要的地位。

主要研究内容

01

Research and Development 研究与开发

本章研究人工智能研究和开发的趋势。首先研究人工智能出版物和专利的趋势,随后研究著名人工智能系统和基础模型的趋势。最后分析人工智能会议的出席情况和开源人工智能软件项目。

研究发现,2023 年,工业界产生了 51 个值得注意的机器学习模型,而学术界仅贡献了 15 个。产学研合作产生的值得注意的模型也有 21 个,创下新高

02

Technical Performance 技术性能

今年AI 指数的技术性能部分全面概述了 2023 年的 AI 进步。它首先从高层次概述 AI 技术性能,追溯其随时间推移的广泛演变。随后,本章研究了各种 AI 功能的当前状态,包括语言处理、编码、计算机视觉(图像和视频分析)、推理、音频处理、自主代理、机器人技术和强化学习。它还重点介绍了过去一年中值得注意的 AI 研究突破,探索了通过提示、优化和微调来改进 大语言模型(LLM)的方法,最后探讨了 AI 系统的环境足迹。

研究发现,人工智能在多个基准测试中的表现都超过了人类,包括图像分类、视觉推理和英语理解等。然而,在竞赛级数学、视觉常识推理和规划等更复杂的任务上,人工智能的表现却落后于人类。

03

Responsible AI 负责任的人工智能

人工智能正日益融入我们生活的方方面面。这种融合正在教育、金融和医疗保健等领域发生,这些领域的关键决策通常基于算法洞察,这一趋势有望带来许多优势。然而,它也带来了潜在的风险。因此,在过去的一年里,人们非常关注人工智能系统的负责任的开发和部署。人工智能社区也越来越关注评估人工智能系统的影响并减轻受影响人群的风险。

本章通过研究四个关键的负责任人工智能领域的指标、研究和基准来探讨负责任人工智能的主要趋势:隐私和数据治理、透明度和可解释性、安全性、公平性。鉴于预计 2024 年全球将有 40 亿人投票,本章还专门设立了一个关于人工智能和选举的章节,并更广泛地探讨了人工智能对政治进程的潜在影响。

**AI Index 的最新研究显示,负责任的 AI 报告严重缺乏标准化。**包括 OpenAI、Google 和 Anthropic 在内的领先开发商主要根据不同的负责任 AI 基准测试其模型。这种做法使系统地比较顶级 AI 模型的风险和局限性变得复杂。

04

Economy 经济

人工智能与经济的融合引发了许多引人注目的问题。一些人预测人工智能将推动生产力的提高,但其影响程度仍不确定。一个主要问题是劳动力大规模流失的可能性——工作将在多大程度上被自动化或被人工智能增强?各行各业的企业已经在以各种方式利用人工智能,但世界一些地区正见证着对这一变革性技术的投资流入增加。此外,投资者的兴趣似乎正转向自然语言处理和数据管理等特定的人工智能子领域。

本章使用 Lightcast、LinkedIn、Quid、麦肯锡、Stack Overflow 和国际机器人联合会 (IFR) 的数据来研究与人工智能相关的经济趋势。首先分析与人工智能相关的职业,涵盖劳动力需求、招聘趋势、技能渗透和人才可用性。随后探讨了企业对人工智能的投资,引入了一个专门关注生成式人工智能的新部分。并进一步研究了企业对人工智能的采用,评估了当前的使用情况以及开发人员如何采用这些技术。最后,评估了人工智能当前和预计的经济影响以及各个行业的机器人安装情况。

研究表明,**尽管去年人工智能私人投资总额有所下降,但生成人工智能的资金却激增,比 2022 年增长了近八倍,达到 252 亿美元。**生成人工智能领域的主要参与者,包括 OpenAI、Anthropic、Hugging Face 和 Inflection,都报告了大量融资。

05

Science and Medicine 科学与医学

**今年的 AI 指数引入了有关科学和医学领域 AI 的新章节,以表彰 AI 在科学和医学发现中日益重要的作用。**它探讨了 2023 年由 AI 推动的杰出科学成就,包括 GraphCast 等先进的天气预报系统和 GNoME 等改进的材料发现算法。本章还研究了医疗 AI 系统性能、SynthSR 和 ImmunoSEIRA 等重要的 2023 年 AI 驱动的医疗创新,以及 FDA AI 相关医疗设备的审批趋势。

2022年,人工智能开始推动科学发现。然而,2023年将推出更重要的与科学相关的人工智能应用——从使算法排序更高效的AlphaDev到促进材料发现过程的GNoME。

06

Education 教育

本章探讨了人工智能和计算机科学 (CS) 教育的趋势,重点关注谁在学习、在哪里学习以及这些趋势随着时间的推移如何演变。在人们对人工智能对教育的影响越来越担忧的背景下,本章还调查了教师和学生对 ChatGPT 等新人工智能工具的使用情况。

分析首先基于计算研究协会的年度 Taulbee 调查,概述了美国和加拿大高等教育 CS 和人工智能教育的现状。然后,它回顾了来自 Informatics Europe 的有关欧洲 CS 教育的数据。今年引入了一个新部分,其中包含来自 Studyportals 的有关全球 AI 相关英语学习项目数量的数据。最后总结了 Code.org 对美国 K-12 CS 教育的见解以及沃尔顿基金会关于 ChatGPT 在学校使用的调查结果。

尽管十多年来美国和加拿大本科毕业生数量一直在持续增长,但选择攻读计算机科学研究生学位的学生数量却一直持平。自 2018 年以来,计算机科学硕士和博士毕业生数量略有下降。

07

Policy and Governance 政策与治理

人工智能日益增强的能力引起了政策制定者的关注。在过去的一年里,美国和欧盟等多个国家和政治机构颁布了重要的人工智能相关政策。这些政策的激增反映了政策制定者越来越意识到需要规范人工智能并提高各自国家利用其变革潜力的能力。

本章从 2023 年重大人工智能政策制定事件的时间表开始研究全球人工智能治理。然后,它分析了全球和美国的人工智能立法工作,研究了人工智能立法提及的内容,并探讨了全球立法者如何看待和讨论人工智能。接下来,本章概述了美国和欧盟的国家人工智能战略和监管工作。最后,它以对美国人工智能公共投资的研究作为结束。

过去五年,美国与人工智能相关的法规数量大幅增加。2023 年,与人工智能相关的法规数量为 25 项,而 2016 年只有 1 项。仅去年一年,与人工智能相关的法规总数就增长了 56.3%。

08

Diversity 多样性

人工智能开发者的人口统计数据通常与用户的人口统计数据不同。例如,相当多的著名人工智能公司和用于模型训练的数据集来自西方国家,因此反映了西方的观点。缺乏多样性可能会延续甚至加剧社会不平等和偏见。

本章深入探讨人工智能的多样性趋势。本章首先利用计算研究协会 (CRA) 的数据,深入了解美国和加拿大计算机科学 (CS) 部门的多样性状况。今年分析的一个值得注意的补充是来自 Informatics Europe 的数据,它揭示了欧洲 CS 教育中的多样性趋势。接下来,本章研究了每年在 NeurIPS 举行的机器学习女性 (WiML) 研讨会的参与率。最后,本章分析了 Code.org 的数据,深入了解了美国中学 CS 教育的当前多样性状况。AI 指数致力于增强本章中共享数据的覆盖范围。关于人工智能趋势的人口统计数据,特别是在性取向等领域,仍然很少。人工智能指数敦促人工智能领域的其他利益相关者加大力度追踪与人工智能相关的多样性趋势,并希望在未来的报告中全面涵盖这些趋势。

虽然白人学生仍然是所有三个级别的新生毕业生中最具代表性的种族,但其他种族群体(如亚裔、西班牙裔、黑人或非裔美国学生)的代表性也在不断增长。例如,自 2011 年以来,亚裔计算机学士学位毕业生的比例增加了 19.8 个百分点,西班牙裔计算机学士学位毕业生的比例增加了 5.2 个百分点。

09

Public Opinion 公众观点(舆论)

随着人工智能变得越来越普遍,了解公众对这项技术的看法如何演变非常重要。了解公众舆论对于更好地预测人工智能的社会影响以及该技术的整合在不同国家和人口群体中的差异至关重要。

本章从全球、国家、人口和种族的角度研究公众对人工智能的看法。它借鉴了几个数据来源:益普索的纵向调查数据,分析了全球对人工智能的态度随时间的变化,多伦多大学的调查数据探讨了公众对 ChatGPT 的看法,皮尤研究中心的数据研究了美国人对人工智能的态度。本章最后使用 Quid 的数据分析了推特上对重要人工智能模型的提及。

益普索的一项调查显示,在过去一年中,**认为人工智能将在未来三到五年内极大地影响他们生活的人数比例从 60% 上升到 66%。**此外,**52% 的人对人工智能产品和服务表示不安,比 2022 年上升了 13 个百分点。**在美国,皮尤数据显示,52% 的美国人表示对人工智能感到担忧多于兴奋,高于 2022 年的 38%。

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值