【DeepSeek 王炸组合】快速生成PPT、思维导图、流程图

如何用Deepseek提高工作效率,有三个王炸组合思路。

1.Deepseek+Kimi生成高质量PPT【思路:Ds深度思考生成markdown格式文档,到kimi的ppt助手生成ppt】

2.Deepseek+Xmind生成思维导图【思路:Ds生成markdown格式文档,到xmind导入生成思维导图】

3.Deepseek+ioDraw生成流程图【思路:Ds生成mermaid格式文档,到xmind导入生成思维导图】


1.Deepseek+Kimi生成高质量PPT

第一步:Deepseek生成文案

打开Deepseek

(https://www.deepseek.com/)

用“深度思考”模式获得一个高质量的内容,点击“复制”到kimi生成ppt

示例:请帮我整理一份Ai agent的PPT,给Agent小白科普Ai agent,按Markdown的格式输出

注意:这边要按Markdown格式输出。

第二步:kimi梳理PPT格式

到kimi网站(https://kimi.moonshot.cn/),打开PPT助手,将刚刚在Deepseek复制的内容黏贴进对话框,kimi梳理后会在底部有个“一键生成PPT”的按钮。

选择合适的PPT模板,点击生成,就等待kimi自动生成。

生成成功后在“去编辑”选择“下载”就可以下载到本地了,根据自己需要再做微调,这样一份PPT就大功告成了。

本地打开PPT还是比较惊艳的。


2.Deepseek+Xmind生成思维导图

第一步:Deepseek生成框架

提示词:请帮我整理一份Ai agent的培训课件框架,要求是给不懂Agent的人员科普Ai agent,请按Markdown的格式输出

第二步:将生成的你内容复制保存到本地

可以新建txt文本,内容黏贴后另存为后缀为.MD的文件

第三步:导入xmind生成思维导图

没有xmind思维导图的小伙伴可以到文末链接下载

这样一个思维导图就做好了,可以在xmind上进行修改。


3.Deepseek+ioDraw生成流程图

第一步:Deepseek生成框架

提示词:我要画一个智能体创建流程图,请用mermaid格式输出

注意这边要说明用mermaid格式输出。生成以后点击这边复制。

第二步:到ioDraw线上或者桌面端黏贴就完成流程图

线上网站:https://www.iodraw.com/,PC桌面端可以下载安装(文末链接也有哦)

说明:桌面端要在“在线图表-代码图表”这边新建哦

如果是用网页直接绘图的,要点“产品-代码绘图”这边哦

线上线下界面都类似,左边将Deepseek的内容黏贴,将原有框里面的内容覆盖掉,右边就可以马上看见流程图了,导出即可


 

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

<think>好的,用户希望作为个人用户,将DeepSeek打造成自己的全方位助手,需要全量模型,并且有一定的本地化数据库扩展定制能力。之前已经讨论过本地部署API调用的区别,现在用户具体想了解如何实施。 首先,用户的需求是个人使用,可能资源有限,比如硬件预算。需要确认用户是否有足够的本地计算资源,比如GPU,或者是否需要依赖云服务。全量模型可能指的是完整的模型参数,本地部署可能需要较高的硬件配置。 接下来,本地化数据库扩展,意味着用户希望模型能够访问自己的私有数据,比如文档、笔记等。这里可能需要RAG(检索增强生成)技术,或者微调模型。但微调需要技术数据准备,而RAG相对容易实现。 定制能力处理习惯,用户可能需要模型按照特定的方式回答问题,或者集成到自己的工作流程中。可能需要结合外部脚本或工具,对输入输出进行处理,或者设置特定的提示模板。 用户可能没有提到但需要考虑的点包括数据隐私、成本、维护难度。作为个人用户,可能更倾向于低成本、易维护的方案,比如使用API结合本地数据库,而不是完全本地部署大模型。 需要分步骤建议,可能包括数据准备、模型选择(本地还是API)、扩展方法(RAG或微调)、集成工具等。同时,考虑到用户是个人,可能需要推荐一些开源工具或框架,降低技术门槛。 最后,提醒可能的挑战,比如硬件要求高,技术复杂度,时间成本,并给出实用建议,比如从简单开始逐步优化。</think>作为个人用户,若想将DeepSeek打造成符合自身需求的**全方位助手**,需要结合本地化数据扩展、个性化定制技术工具链的搭建。以下是具体实现路径关键步骤: --- ### **一、核心能力需求拆解** 根据你的描述,需要实现三个核心目标: 1. **全量模型掌控**:使用完整模型参数(非精简版),最大化模型能力 2. **本地化数据扩展**:让模型理解你的私有知识库(如个人笔记、专业资料等) 3. **个性化定制**:适配你的语言风格、任务处理习惯特定工作流 --- ### **二、实现方案设计** #### **1. 模型部署选择** | **方案** | **优势** | **挑战** | **推荐度** | |----|----------------------------------|----------| | **本地部署全量模型** | 完全控制模型数据隐私 | 需要高性能GPU(如RTX 3090/4090) | ★★★★☆ | | **云端API+本地增强** | 低成本起步,适合轻量级需求 | 依赖网络,数据需加密传输 | ★★★☆☆ | | **混合架构** | 平衡性能与成本(关键任务本地+通用任务API) | 架构复杂度较高 | ★★☆☆☆ | **建议**:若拥有至少24GB显存的GPU(可运行13B~34B参数模型),优先选择**本地部署**;否则从**API调用+RAG增强**起步。 --- ### **三、关键实施步骤** #### **阶段1:基础环境搭建** 1. **硬件准备** - **最低配置**:NVIDIA RTX 3090(24GB显存) + 32GB内存 - **推荐配置**:双卡RTX 4090(48GB显存) + 64GB内存(可运行70B参数模型) - **存储**:至少500GB SSD用于存储模型知识库 2. **模型获取与部署** - 从DeepSeek官方获取全量模型(如`deepseek-llm-67b-chat`) - 使用**vLLM**或**llama.cpp**部署推理服务(优化显存吞吐量) ```bash # 示例:使用vLLM启动API服务 python -m vllm.entrypoints.api_server --model deepseek-ai/deepseek-llm-67b-chat --tensor-parallel-size 2 ``` #### **阶段2:本地知识库扩展** 1. **数据准备** - 结构化个人数据:整理笔记/邮件/文档为Markdown或JSON格式 - 非结构化数据:用`unstructured`库解析PDF/PPT/网页内容 ```python from unstructured.partition.pdf import partition_pdf elements = partition_pdf("my_notes.pdf") ``` 2. **构建检索增强系统(RAG)** - 使用**ChromaDB**或**FAISS**建立向量数据库 - 用`text-embedding-3-small`生成知识库嵌入向量 ```python from langchain_community.vectorstores import Chroma from langchain_openai import OpenAIEmbeddings vectorstore = Chroma.from_documents( documents=your_docs, embedding=OpenAIEmbeddings(model="text-embedding-3-small") ) ``` 3. **与模型集成** - 通过LangChain实现RAG管道 ```python from langchain.chains import RetrievalQA from langchain_community.llms import VLLMOpenAI llm = VLLMOpenAI( openai_api_base="http://localhost:8000/v1", model_name="deepseek-67b-chat", max_tokens=2048 ) qa_chain = RetrievalQA.from_chain_type( llm=llm, retriever=vectorstore.as_retriever(), chain_type="stuff" ) ``` #### **阶段3:个性化定制** 1. **提示词工程** - 在系统提示中定义角色响应规则 ```python SYSTEM_PROMPT = """你是一个高度定制化的个人助手,遵循以下规则: 1. 使用简洁的技术文档风格回复 2. 优先引用用户知识库中的内容 3. 拒绝讨论与用户专业领域无关的话题""" ``` 2. **微调模型(进阶)** - 使用LoRA在私有数据上微调(需16GB+显存) ```python from peft import LoraConfig peft_config = LoraConfig( r=8, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none" ) ``` 3. **习惯捕捉自动化** - 用**Loguru**记录交互历史,分析高频需求 - 通过`langsmith`监控并优化任务处理流程 --- ### **四、典型应用场景实现** #### **场景1:个人知识管理** - **输入**:`检索我2023年关于RAG的笔记,总结成思维导图` - **流程**: 1. RAG检索相关文档片段 2. 调用`graphviz`生成可视化导图 3. 自动保存到指定目录 #### **场景2:自动化工作流** - **输入**:`监控我的GitHub项目,每日用中文生成开发进度简报` - **实现**: ```python def generate_daily_report(): issues = get_github_issues() report_prompt = f"用简洁的列表总结以下问题:\n{issues}" return qa_chain.invoke(report_prompt) schedule.every().day.at("09:00").do(generate_daily_report) ``` --- ### **五、成本与效率优化建议** 1. **硬件节省方案** - 使用**GGUF量化**(如Q4_K_M)降低显存占用 ```bash ./llama.cpp/quantize deepseek-67b-f16.gguf deepseek-67b-q4_k.gguf Q4_K_M ``` 2. **计算资源复用** - 通过**Ollama**同时运行多个量化模型 3. **API替代方案** - 对实时性要求低的任务使用DeepSeek API(成本约$0.1/千token) --- ### **六、注意事项** 1. **数据安全** - 本地部署时启用磁盘加密(如LUKS) - API调用时使用`cryptography`库加密传输数据 2. **可持续维护** - 建立定期知识库更新机制(如每周同步Notion数据库) - 用`dvc`管理模型版本训练数据 --- ### **总结** 实现个人专属的DeepSeek助手需要**分阶段实施**: 1. **基础层**:根据硬件条件选择部署方式 2. **扩展层**:通过RAG融合本地知识库 3. **定制层**:用提示词/微调适配个人需求 建议从**API+本地扩展**起步,逐步过渡到本地全量模型。关键工具链组合推荐: ``` 模型推理:vLLM/Ollama 向量数据库:ChromaDB 任务编排:LangChain + Prefect 监控优化:LangSmith + Prometheus ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值