Manus 作为一款智能体产品,被设计为能够自主完成复杂任务的 AI 系统。但是到目前为止也没有听说谁真正用过 Manus。
不过近日 LangChain 官方推荐了一个开源项目,LangManus:
从其 GitHub 官网来看,LangManus 是一个社区驱动的 AI 自动化框架,它建立在开源社区的卓越工作基础之上。我们的目标是将语言模型与专业工具(如网络搜索、爬虫和 Python 代码执行)相结合,同时回馈让这一切成为可能的社区。
根据官方文档介绍,LangManus 实现了一个分层的多智能体系统,其中有一个主管智能体协调专门的智能体来完成复杂任务:
系统由以下智能体协同工作:
-
协调员(Coordinator):工作流程的入口点,处理初始交互并路由任务
-
规划员(Planner):分析任务并制定执行策略
-
主管(Supervisor):监督和管理其他智能体的执行
-
研究员(Researcher):收集和分析信息
-
程序员(Coder):负责代码生成和修改
-
浏览器(Browser):执行网页浏览和信息检索
-
汇报员(Reporter):生成工作流结果的报告和总结
Manus行不行我不知道,但LangManus是真行!
接下来我就来分享一下如何在本地部署并运行 LangManus。
我的电脑是 Windows 11。其他操作系统应该也是同样的步骤。
拉取 LangManus GitHub 项目
浏览器打开:
https://github.com/langmanus
可以看到 LangManus 项目分为后端和前端两个部分:
那么我们先把这两个项目克隆下来:
接下来就是依次按照 GitHub 上的说明配置前后端项目了。
配置后端项目
后端是一个使用 uv 管理包的纯 Python 项目:
注意!要执行接下来的操作,你需要先安装好 Miniconda。
打开终端,依次执行下述指令:
# 替换成你本地实际的后端项目地址
cd C:\Home\Documents\Projects\langmanus
conda create -n langmanus python=3.12
conda activate langmanus
pip install uv
uv sync
# 安装 Playwright 来使用浏览器
uv run playwright install
接下来很关键!配置环境变量和模型。
首先配置环境变量,复制一份 .env.example 为 .env 文件,然后填入下面的内容。
-
上图中我使用的是阿里云的模型服务,你可以自由选择其他厂商甚至是本地的模型。
-
TAVILY_API_KEY:这是用来执行网络搜索的。
然后我们配置 conf.yaml 文件,也是从 cong.yaml.example 中复制一个得到的。
熟悉我的读者朋友都知道,我用惯了以 OpenAI API 兼容格式调用其他模型,所以上图我都加了一个 openai 前缀。(当然, litellm 也要求你必须提供一个模型提供商
conf.yaml 里面配置了三种模型:
-
推理模型,我选择了 deepseek-r1
-
基础模型,我选择了 qwen-plus
-
视觉模型,我选择了 qwen2.5-vl-72b-instruct
现在,我们后端配置完了。
配置前端项目
首先下载并安装 Node.js,安装时一切默认往下点就对了。
下载地址:https://nodejs.org/en
安装结束之后,安装一个 pnpm:
npm install -g pnpm@latest-10
安装成功之后别忘了重启一下终端。
现在回到 langmanus-web 项目,这个项目的环境变量文件就一行:指定后端服务接口的配置。同样的从 .env.example 复制一个 .env 文件。
接下来安装前端依赖:
# 替换成你本地实际的后端项目地址
cd C:\Home\Documents\Projects\langmanus-web
pnpm install
现在前端项目也配置好了。
开始使用 LangManus
接下来分别启动前后端项目:
在浏览器中打开:http://localhost:3000/
我使用和官方演示同样的任务:Calculate the influence index of DeepSeek R1 on HuggingFace. This index can be designed using a weighted sum of factors such as followers, downloads, and likes.
第一次我配置了 Chrome 浏览器,下面是效果:
最后的结果出现了 404,可能是我现在的 VLM 不太好,也可能是其他原因。
然后我不配置 Chrome 浏览器:
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓