当 AI 自动化成为大势所趋,字节跳动悄然掷出一枚重磅开源项目——LangManus。它不仅被视为 Manus 的有力竞争者,更被寄予厚望,成为推动 AI 自动化普及的开源引擎。LangManus 的野心在于,它不仅整合了强大的 LLM 能力,还将网络搜索、网页爬取、Python 代码执行等工具融为一体,目标直指复杂任务的自动化解决。
那么,LangManus 如何重塑 AI 自动化格局?它又将如何赋能开发者?让我们一起揭开 LangManus 的神秘面纱,探寻其背后的技术逻辑与无限可能
AI 自动化的新变量:从 Manus 到 LangManus
在 AI 自动化的浪潮中,Manus 以其智能体协作模式,为复杂任务的处理提供了新的思路。如今,字节跳动开源的 LangManus,正试图在 Manus 的基础上,构建一个更开放、更强大的 AI 自动化平台。
LangManus 的诞生,不仅仅是技术的复刻,更是一次对 AI 自动化未来的探索。它以开源为底色,以社区为驱动力,旨在将 LLM 的强大能力与各种实用工具相结合,实现任务的自动化处理,并回馈给整个开发者社区。
LangManus 技术解构:多智能体协作,驱动自动化引擎
LangManus 的核心竞争力,在于其精巧的技术架构和丰富的功能特性。
它是多智能体系统,LangManus 采用分层架构,由多个智能体协同工作,实现复杂任务的分解和处理。协调员、规划员、主管、研究员、程序员、浏览器和报告员等智能体各司其职,如同一个高效运转的团队。
* *协调员 (Coordinator)*:任务的入口,负责接收用户指令并分配任务。* *规划员 (Planner)*:当任务复杂时,负责制定详细的执行计划。* *主管 (Supervisor)*:任务的指挥中心,监督任务执行并调用其他智能体。* *研究员 (Researcher)*:信息的探索者,负责网络搜索和数据挖掘。* *程序员 (Programmer)*:代码的创造者,负责编写和执行 Python 代码。* *浏览器 (Browser)*:网页的操控者,模拟用户在浏览器中的操作。* *报告员 (Reporter)*:结果的呈现者,负责整理任务执行结果并生成报告。
- LLM 深度集成: LangManus 兼容多种主流 LLM,如 Qwen、OpenAI 等,并采用三层 LLM 系统,以适应不同场景的需求:推理 LLM、基础 LLM 和视觉语言 LLM。
- 工具生态: LangManus 集成了丰富的工具,包括网络搜索 (Tavily API)、神经搜索 (Jina)、Python REPL 和代码执行环境、浏览器控制等,为任务的执行提供强大的支持。
- 工作流管理: LangManus 提供了可视化的工作流程图和任务分配监控功能,让用户可以清晰地了解任务的执行过程。
- API 服务: 基于 FastAPI 的 API 服务,支持流式传输,方便用户进行二次开发和集成。
值得一提的是,LangManus 还支持 AWS Graviton 和 Docker,进一步提升了其性能和易用性。
快速上手:LangManus 的安装与配置
想要体验 LangManus 的强大功能?只需简单几步:
- 安装
pip install uv # 使用 uv 包管理器git clone https://github.com/byteplus/lang-manus.git cd lang-manusuv pip install -r requirements.txtplaywright install
-
安装和启动
在.env文件里面讲对应的 API 密钥、模型信息等完成配置,然哦呼就可以使用下面命令直接启动了!
python webui.py
快应用场景:LangManus 的无限可能
LangManus 的应用场景非常广泛,无论是企业内部效率提升,还是个人效率工具的打造,都能发挥重要作用。**核心功能是在大模型的基础上完成任务自动化,即自动化处理多步骤任务,**例如计算 HuggingFace 模型的影响力指数,让繁琐的工作变得简单高效。典型的场景有
- 自动化周报生成:告别手动整理数据,一键生成周报。
- 智能客服系统:7x24 小时在线,快速响应用户问题。
- 企业级私密部署方案:保障数据安全,满足企业内部需求。
- 人力资源:智能简历筛选,提升招聘效率。
- 房产决策:数据驱动分析,辅助投资决策。
- 旅行规划:个性化行程推荐,一键搞定旅行计划。
虽然 LangManus 的目标是向 Manus 看齐,但开源赋予了它独特的优势。开源意味着更多的可能性,更多的创新,以及更强大的社区支持。尽管 LangManus 在某些方面可能还有提升空间,但它所代表的开源力量,将推动 AI 自动化技术的快速发展。而且相信背后的字节在短期内还会有进一步的发力。
结语
LangManus,作为字节跳动开源的 AI 自动化框架,为开发者提供了一个强大的工具,可以更加便捷地构建各种自动化应用。它的开源特性和多智能体协作的架构,使其具备了广阔的应用前景。随着社区的不断完善和技术的不断发展,LangManus 有望在 AI 自动化领域扮演越来越重要的角色。
如果你对 AI 自动化充满好奇,不妨亲自体验 LangManus,或许它将为你开启全新的工作方式。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。