“ 高性能大模型的打造,是一项复杂的系统性工程 ”
在上一篇文章中讲了学习大模型的基础路线,而如果是对有一定基础的人来说,应该怎么进阶呢?也就是说大模型更加高级的技术栈有哪些?
一个好的基础能够让你在学习的道路上事半功倍,但绝对不是学习的终点,大模型技术也不外如是。
大模型的进阶学习路线
在上一篇的文章中介绍了大模型的基础学习路线,比如基础理论,编程,深度学习框架等等。
以上技术都属于大模型技术的基础,不论是做学术研究,还是个人学习都已经足够;但是一项技术并不仅仅用来学习的,还需要能够在企业生产中应用,而在生产环境中对稳定性的要求要远高于对技术的追求。
那么怎么才能打造一款能够在企业生产中使用的大模型呢?而这就属于大模型技术的进阶;如果说大模型的基础是能够做出来一个大模型,那么大模型的进阶就是怎么把大模型做的更好。
下面也将从几个方面介绍一下大模型的进阶:
-
模型优化
-
硬件加速
-
分布式并行计算
模型优化
我们知道大模型目前最大的瓶颈就是算力问题,而算力就代表着成本,大模型技术面临着高昂的成本问题。这也间接导致了很多小微企业对大模型望而却步,原因就是无法承担大模型巨大的资金成本和技术成本。
因此,就有很多模型优化的技术,比如说迁移学习,模型剪枝,模型蒸馏等;目的就是用最小的成本,快速的打造出一款能用的,好用的大模型。
模型剪枝:模型剪枝通过删除冗余神经元和连接,减少模型的大小而不牺牲性能。
模型量化:模型量化通过降低精度,如从float32转化为int8,降低模型的计算量和存储需求。
知识蒸馏:知识蒸馏则是将大模型的知识转移到小模型,保持小模型的准确性。
通过以上方法,能够大大提高模型部署效率和资源利用率,降低企业成本。
硬件加速
关于硬件加速每个了解大模型的人应该都知道一些,最简单也是最知名的方式就是增加GPU的数量;而英伟达市值的飙升,以是因为其强大的算力芯片。
那么硬件加速具体是什么情况呢?
其实加速有多种方式,成本最低的就是优化模型架构,使用更加高效的算法,这些叫做软件加速。但以目前的技术来说,软件加速的能力有限,因此唯一的办法就是堆量,通过大量的计算硬件资源的堆积来解决算力不足的问题。
大模型常见的硬件加速除了GPU之外,还有FPGA和ASIC等。
CPU,GPU,FPGA,ASIC是目前AI计算过程中最主流的四种芯片类型,CPU这玩意不用多说,任何电子产品都离不开它的存在;但CPU这玩意功能强大,但并不是很适合AI处理。
原因就是CPU就是一个大学生,它能够处理复杂的数学问题;但AI算力更多的需求并不是处理复杂的逻辑问题,而是计算一大段100以内的加减法,大学生再厉害它的时间和精力也是有限的,远不如找几百个小学生每人算一题来的快。
因此,GPU这玩意就是大力出奇迹的典型代表,我不需要多么高深的知识储备,只需要简单的1加1等于2就行了。
而FPGA是指现场可编程门阵列,它是一个可以现场编程的,并按照预定设计意图来工作的集成电路。FPGA最厉害的地方是可以通过配置的方式来实现任意需要的功能组合,并且可以以大规模并行的方式实施算法,这意味着我们可以非常迅速和高效的执行大数据处理。
ASIC——特定应用集成电路,它是用来专门针对某一领域设计的芯片,比如神经网络计算芯片——NPU,Tensor计算芯片TPU等。因为针对特定领域,所以ASIC往往可以表现出比GPU和CPU更强的性能。
分布式并行计算
大模型由于其强大的算力需求,在单台机器上已经很难完成大模型的训练和微调,因此采用分布式并行计算是一个无法避免的选择。
所谓的并行计算,就是把大模型根据模块或功能拆分,然后部署到多台机器上进行计算。其难点是模块的拆分,以及不同机器上的数据协调和整合。
在传统的分布式系统中,比如web开发是根据功能模块进程拆分,不同服务之间通过API的方式进行交互,而且不同服务之间没有强关联性。
但大模型不同,大模型是一个整体它的任何环节出问题都会导致模型的失效,因此大模型只能采用并行计算的方式进行分布式部署。
而根据不同的并行方式,大模型并行计算又分为多种类型,如:
-
数据并行
-
张量并行
-
流水线并行
不同的并行方式有其独特的特点和实现方式,不同的模型根据实现方式不同也有其最适合的并行计算方式。但总体来说,并行计算是大模型训练和微调的基础,没有并行计算,大模型也很难存在。
打造一款能用好用且高性能的大模型并不是一件简单的事情,其中涉及到很多复杂的理论和难点,同时还要面临着巨大的技术和资金成本,因此打造大模型并不是人人都能参与的工作。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓