一文读懂 RAGFlow 知识库接入 Dify 的全流程

前面,我发了一篇部署ragflow的文章,以及如何让ragflow与dify共存在一台电脑上:

今天来给大家分享一下,如何将ragflow知识库接入dify,作为dify的外挂知识库。

一、RAGFlow中相关操作

一)配置模型

如果知识库配置RAPTOR策略的话,需要配置大模型,此处跟Dify上配置模型类似,rerank模型,embedding模型已经默认配置好,无需再配置,只需配置chat模型即可,配置上后,方便其他地方使用。

图片

 

二)创建RAGFlow知识库

此处先以最简单配置。

图片

 

图片

 

图片

 

三)获取ragflow接口密钥

图片

 

四)获取知识库ID

图片

 

二、Dify接入RAGFlow

一)添加外部知识库API

图片

 

二)填写RAGFlow关键信息

① 自定义外部知识库名称

② 外部知识库接口base url

③ RAGFlow的API KEY

图片

 

三)连接外部知识库

图片

 

图片

 

三、创建一个Dify聊天助手

一)应用基本信息

图片

 

二)添加知识库为上下文

图片

 

三)测试

1、聊天效果

图片

 

2、请求日志查看

图片

 

RAGFlow已经自带了中英文各种嵌入模型和rerank模型,到对应场景,配置参数时,自动默认好对应模型,这一点很赞!

通过其背部整合的深度文档解析器,可以针对文档布局进行分析,就像人有了一双眼睛,看到的不仅仅是文字,还有篇章布局,获取的文档信息更加丰富,层次维度更加多元。

我们可以根据情况,各取所长,融入更多自己的更多工作场景!

 

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### Dify 外部知识库开发指南 #### 支持的文档格式 在使用Dify进行外部知识库开发前,需先将企业内部资料转换成支持的格式。这些格式包括但不限于PDF、Word文档、Excel表格以及纯文本文件等[^1]。 #### 构建本地知识库系统 为了利用Dify搭建高效的本地知识库,可以采用DeepSeek这一深度学习工具作为核心组件。通过结合两者的优势,不仅能够实现对企业内外海量信息的有效管理和快速检索,还能进一步提升自然语言处理能力,助力更精准的内容理解与分析[^2]。 #### 平台特性概览 Dify作为一个专注于大语言模型应用开发的开源平台,特别适合希望简化AI项目实施流程的技术团队和个人开发者。该平台集成了BaaS架构特点并融入了LLMOps最佳实践,即使是没有深厚编程背景的人士也能够在短时间内掌握其基本操作方法。更重要的是,Dify允许接入多样化的数据源,如上传至服务器上的静态资源或是抓取自互联网公开页面的数据;同时提供了一套直观易用的操作面板让用户便捷地维护自己的专属数据库。另外值得一提的是,针对高级用户群体的需求,官方还开放了一系列RESTful风格的标准API接口供调用,便于与其他第三方应用程序无缝对接[^3]。 #### 功能亮点展示 得益于先进的算法设计思路——检索增强生成(Retrieval-Augmented Generation),当下的许多优秀开源解决方案都能够很好地满足不同场景下对于高质量对话交互体验的要求。具体而言,在面对复杂查询请求时,这类系统会优先尝试从未知领域内寻找最接近的答案片段加以组合拼接形成最终回复内容,而不是单纯依赖预训练阶段积累下来的知识体系独立作答。因此,相较于传统方式而言,这种方法往往能带来更加贴近实际需求的结果呈现效果[^4]。 #### 应用实例说明 借助于上述提到的各项关键技术支撑,现在已经有越来越多的企业开始尝试运用类似的智能化手段辅助日常办公事务处理工作。比如,一些大型跨国公司将这套方案应用于员工培训材料编写过程中,既提高了工作效率又保证了产出物的质量水平;还有部分金融机构将其引入风险评估机制当中,通过对过往案例的学习模仿来预测未来可能出现的风险事件发展趋势等等[^5]。 ```python import dify_sdk as sdk # 初始化客户端 client = sdk.Client(api_key='your_api_key') # 创建新的知识条目 entry_id = client.create_entry( title="Example Entry", content="This is an example entry created using the Python SDK." ) print(f"Created new entry with ID {entry_id}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值