【2025 AI Agent之年】实战指南:使用CrewAi和Gemini 1.5构建多智能体系统,掌握未来技术!

2025年:代理人工智能之年——使用CrewAi和Gemini 1.5构建多智能体系统

正如许多专家预测的那样,2025年正逐渐成为代理人工智能的年份。这个新兴领域准备重新定义我们与技术互动的方式,通过引入高度自主的系统,这些系统可以在最小的人工干预下做出决策并执行复杂任务。受此启发,我开始构建一个不仅能执行特定任务还能根据用户定义的主题创建有意义内容的多智能体系统。

在这篇文章中,我将带领你了解我构建的系统、面临的挑战以及代理人工智能所拥有的激动人心的未来。

什么是代理人工智能?

代理人工智能指的是设计用来独立执行任务而无需持续人类监督的系统。与传统的人工智能不同,后者在每一步都需要明确的指令,代理人工智能能够做出自主决策,并根据变化的情况调整其行动。

到2025年,我们预计这些系统将成为从医疗保健到物流等行业的核心,有能力处理从自动化重复任务到自主解决复杂问题的一切。事实上,许多预测预测,超过60%的企业人工智能实施将以某种形式整合代理人工智能。

我多智能体系统背后的愿景

在代理人工智能的巨大前景下,我决定构建一个简单的多智能体系统,以展示其在内容创作和摘要领域的潜力。我构建的系统接受用户输入的主题,执行相关的网络研究,并生成两个输出:一篇深入的博客文章和一个简洁的LinkedIn帖子。

这个项目依赖于Gemini 1.5模型的力量,这是一个强大的人工智能语言模型,它在生成内容方面起着关键作用。Gemini 1.5提供了令人印象深刻的文本生成能力,确保输出既连贯又吸引人,以及CrewAi,这是一个设计用来构建和管理由AI驱动的多智能体系统的平台。它允许你通过定义具有特定角色和任务的智能体来创建复杂的工作流程,然后协调它们无缝地一起工作。

系统如何工作

我构建的多智能体系统利用了三个主要智能体:

主题研究员:这个智能体负责从网络上搜索和分析关于给定主题的相关资源。它使用互联网搜索工具来识别最相关和最有信息量的文章。

博客作者:第二个智能体采用研究成果来撰写一篇全面的博客文章。博客文章包括引言、逐步指南和结论,为读者提供对主题的完整理解。

LinkedIn帖子创作者:第三个智能体将信息总结成一个简洁而有吸引力的LinkedIn帖子。这个智能体专注于打造与专业人士产生共鸣的信息,包括相关的话题标签以提高可见性。

代码块和解释

以下是系统的关键组成部分,包括代码块和解释。

导入库和初始化环境

第一步是加载环境变量,例如我们使用的工具的API密钥:

import os``from dotenv import load_dotenv``from crewai import Agent, Crew, Process, Task``from crewai_tools import SerperDevTool``import os``from crewai import LLM``from dotenv import load_dotenv``   ``# Load environment variables from a .env file``load_dotenv()``# Set the API key for the SerperDevTool (web search tool)``os.environ['SERPER_API_KEY'] = os.getenv('SERPER_API_KEY')``GEMINI_API_KEY = os.getenv('GEMINI_API_KEY')

在这里,我们从.env文件中加载API密钥,以保持它们的安全,而不是直接在脚本中硬编码。

设置AI工具

接下来,我们初始化Gemini 1.5模型和网页搜索工具(SerperDevTool):

# Initialize the tool for internet searching capabilities``tool = SerperDevTool()``llm = LLM(`    `model="gemini/gemini-1.5-flash",  # Specify the AI model to use`    `temperature=0.7  # Set the creativity of the model``)

在这里,我们设置SerperDevTool来执行网络搜索,并使用Gemini 1.5模型来生成内容。温度参数控制响应的创新性或确定性。

定义智能体

我们定义了三个协同工作的智能体来实现目标:主题研究员、博客作者和LinkedIn帖子创作者。

# Define the Topic Researcher agent``topic_researcher = Agent(`    `role='Topic Researcher',`    `goal='Search for only 1 relevant resource on the topic {topic} from the web',`    `verbose=True,`    `memory=True,`    `backstory='Expert in finding and analyzing relevant content from Web...',`    `tools=[tool],`    `llm=llm,`    `allow_delegation=True``)
# Define the Blog writer agent``blog_writer = Agent(`    `role='Blog Writer',`    `goal='Write a comprehensive blog post from the only 1 article  provided by the Topic Researcher, covering all necessary sections',`    `verbose=True,`    `memory=True,`    `backstory='Experienced in creating in-depth, well-structured blog posts that explain technical concepts clearly and engage readers from introduction to conclusion.',`    `tools=[tool],`    `llm=llm,`    `allow_delegation=True``   ``)
# Define the linkedin post writer agent``   ``linkedin_post_agent = Agent(`    `role='LinkedIn Post Creator',`    `goal='Create a concise LinkedIn post summary from the transcription provided by the Topic Researcher.',`    `verbose=True,`    `memory=True,`    `backstory='Expert in crafting engaging LinkedIn posts that summarize complex topics and include trending hashtags for maximum visibility.',`    `tools=[tool],`    `llm=llm,`    `allow_delegation=True``   ``)

每个智能体都定义了特定的角色和目标。例如,主题研究员智能体负责在网络上找到相关的文章。

为每个智能体定义任务

一旦智能体设置好,我们就定义每个智能体将执行的任务。例如,主题研究员的任务是识别相关内容:

# Define Tasks``research_task = Task(`    `description="Identify and analyze only 1 content or  article on the {topic} from the web.",`    `expected_output="A complete word-by-word report on the most relevant post or article found on the topic {topic}.",`    `agent=topic_researcher,`    `tools=[tool]``)``   ``blog_writing_task = Task(`    `description="""Write a comprehensive blog post based on the 1 article  provided by the Topic Researcher.`                   `The article must include an introduction, step-by-step guides, and conclusion.`                   `The overall content must be about 400 words long.""",`    `expected_output="A markdown-formatted blog post",`    `agent=blog_writer,`    `tools=[tool],`    `output_file='./artifacts/blog-post.md'``)``   ``linkedin_post_task = Task(`    `description="Create a LinkedIn post summarizing the key points from the transcription provided by the Topic Researcher, including relevant hashtags.",`    `expected_output="A markdown-formatted LinkedIn post",`    `agent=linkedin_post_agent,`    `tools=[tool],`    `output_file='./artifacts/linkedin-post.md'``)

在这种情况下,任务包括搜索和分析特定主题的相关文章,并创建博客和领英帖子。

运行流程

一旦智能体和任务设置完成,我们就创建团队并启动流程:

# Create the Crew with defined agents and tasks``my_crew = Crew(`    `agents=[topic_researcher, linkedin_post_agent, blog_writer],`    `tasks=[research_task, linkedin_post_task, blog_writing_task],`    `verbose=True,`    `process=Process.sequential  # Run tasks sequentially``)``# Input Topic``topic_of_interest = 'gemini 2.0 multimodel'``# Kick off the process with the provided topic``result = my_crew.kickoff(inputs={'topic': topic_of_interest})``print(result)

在这里,智能体以顺序过程协同工作,确保每个智能体依次执行其任务。启动方法使用提供的topic_of_interest运行流程,在这个案例中是"gemini 2.0 multimodel"。

生成输出

智能体将执行各自的任务并生成输出:一篇全面的博客文章和一篇简洁的领英帖子。结果将在最后打印出来。

Gemini 1.5的角色

这个项目最令人兴奋的方面之一是使用Gemini 1.5模型为AI智能体提供动力。Gemini 1.5以其先进的自然语言处理能力而闻名,这使得它能够在广泛的上下文中理解和生成类似人类的文本。无论是进行研究还是撰写内容,Gemini 1.5都能确保智能体以高准确性和流畅性有效地完成其任务。

挑战与经验教训

构建这个多智能体系统并非没有挑战。我遇到的一些关键障碍包括:

整合多个智能体:确保智能体之间顺畅的沟通至关重要。每个智能体都有特定的角色,但它们需要无缝协作以产生期望的结果。我了解到,清晰和明确的任务管理对于系统的效率至关重要。

完善研究智能体:主题研究智能体的任务是搜索网络上的相关资源。虽然它总体表现良好,但有时它会返回与主题不完全相关的文章。微调其搜索参数需要一些试错。

内容质量控制:尽管Gemini 1.5在生成内容方面非常有效,但输出的质量取决于它接收到的输入。确保提供给博客撰写智能体和领英帖子创建智能体的研究是全面和清晰的,以产生连贯且结构良好的最终输出,这很重要。

结论

2025年很可能是代理人工智能之年,我们已经初步看到了其潜力。我的多智能体系统只是AI如何用于自动化复杂任务和生成有意义输出的一个例子。随着技术的不断进步,我们可以期待更强大的系统出现,重塑行业,使AI成为我们日常生活中的关键部分。

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值