知识图谱的应用领域广泛,包括搜索引擎、智能对话系统、推荐系统、医疗诊断、教育等领域,知识图谱的主要功能包括:
-
知识管理与组织
通过图形化的方式展示知识,帮助人们更好地理解和管理海量信息。
-
语义搜索与智能问答
支持按主题检索,实现从网页链接向概念链接的转变,提供更精准的搜索索。
-
知识推理与决策支持
通过知识建模、知识表示和知识推理等技术,提供智能化的分析和推理能力,为决策者提供科学依据。
-
知识融合与整合
从不同来源的数据中提取和整合知识,形成统一的知识体系,消除信息孤岛。
-
知识可视化
利用可视化技术展示知识的内在结构和发展脉络,帮助用户快速理解复杂问题。
那么在大模型研发的关键技术环节,知识图谱的作用是什么呢?
知识图谱在大模型研发中的具体应用场景包括以下几个方面:
(1) 对大模型训练数据增强的作用
-
提供结构化知识:知识图谱通过实体、关系和属性的明确表示,为大模型提供了丰富的背景信息和上下文,帮助模型更好地理解文本中的实体及其上下文,从而提高模型的推理能力和理解能力。
-
增强数据标注和抽取:知识图谱可以用于对原始数据进行实体、关系、事件等的标注,提高数据处理的效率和准确性。此外,通过知识图谱进行实体类型、关系类型、事件类型、知识体系的提取,可以提升知识图谱的构建质量。
-
辅助模型预训练:知识图谱的信息可以作为预训练数据的一部分,注入到大模型的输入中,增强模型的预训练能力。例如,通过K-编码器、T-编码器等模型结构,将知识图谱中的实体和关系信息与文本序列进行融合,提高模型的预测准确性。
-
提升模型的泛化能力:在训练数据有限或分布不均的情况下,知识图谱可以通过提供丰富的背景知识,帮助模型避免过拟合现象,提高模型的泛化能力。
-
增强模型的可解释性:知识图谱可以提供事实性知识和常识性知识,帮助大模型在推理过程中提供更准确的解释。例如,在医疗领域,知识图谱可以提供疾病、症状和治疗方法之间的关系,帮助模型做出更合理的诊断建议。
-
支持多模态数据融合:知识图谱不仅可以整合文本数据,还可以整合来自不同模态的数据,如图像、视频等,为大模型提供更加丰富和多元的知识背景,使其在多模态学习任务中表现出色。
-
降低训练复杂性:通过预先整合和融合知识图谱,可以简化大模型的训练过程。例如,在训练阶段,可以通过知识注入、蒸馏和微调等方法,减少对大量标注数据的依赖,降低训练成本。
-
支持个性化和动态学习:知识图谱可以根据用户的兴趣和行为,动态更新和调整推荐内容,提供更加精准的内容推荐策略,增强个性化服务。
-
提高推理能力:知识图谱可以作为大模型的推理路径和背景知识,提升模型的推理性能。例如,在问答系统中,知识图谱可以提供丰富的背景信息和上下文,帮助模型生成更准确的答案。
-
优化模型性能:知识图谱可以通过知识蒸馏、知识注入和知识调优等方法,优化大模型的性能。例如,在教育领域,知识图谱可以将海量教育场景知识融入预训练大模型,增强其对教育场景知识的理解和认知能力。
(2)对大模型推理能力的增强作用
-
结构化知识提供上下文和背景:知识图谱以实体、关系和属性的形式组织信息,为大模型提供了丰富的上下文和背景知识,使其能够更好地理解复杂问题和领域间的关系。
-
增强推理能力:知识图谱的结构化表示形式(如节点和边)有助于大模型进行逻辑推理和知识检索,从而生成更准确、相关且语义连贯的输出。
-
减少幻觉现象:通过引入知识图谱的事实性知识,大模型可以减少生成错误或不一致信息的风险,提高输出的可靠性。
-
提升可解释性和透明度:结合知识图谱,大模型的推理过程变得更加透明和可解释,用户可以更清楚地了解模型的决策依据。
-
优化问答能力:知识图谱能够帮助大模型处理复杂的多跳查询,特别是在需要跨信息关联推理的任务中,显著提升问答能力。
-
促进知识转移和泛化:知识图谱不仅在特定领域内提供丰富的知识,还能在不同任务和领域间进行知识泛化,提升模型对未知或分布外数据的性能。
-
增强数据集成与检索:知识图谱能够整合来自多种来源的数据,支持更高效的数据检索和信息整合,从而提升大模型的整体性能。
-
支持多模态推理:通过结合图像、视频等其他模态的知识图谱,大模型可以实现更全面的多模态推理能力。
(3)对大模型可解释方面的贡献
-
提供结构化知识:知识图谱通过显式存储和组织知识,为大模型提供背景信息和语义支持,帮助模型理解问题的上下文,从而提高推理的准确和可靠性。
-
增强推理过程的透明度:知识图谱的结构化表征和显性知识可以与大模型的隐性知识结合,提高模型的可解释性。例如,通过动态知识图谱融合增强大模型的推理能力,使其能够从知识图谱中获得规则和路径,从而提升推理过程的透明度。
-
减少“幻觉”现象:知识图谱可以帮助大模型减少生成错误或不一致信息的风险,提高输出的可靠性。通过知识图谱提供的实体关系和属性信息,大模型可以更好地理解文本中的实体及其上下文,从而减少“幻觉”现象。
-
支持复杂推理:知识图谱为大模型提供了丰富的实体和关系信息,使其能够进行复杂的逻辑推理和知识检索。例如,在药物发现和预生物医学研究中,知识图谱可以帮助大模型理解专有名词、术语及其属性,从而提高决策和推理能力。
-
优化知识存储和检索:知识图谱的结构化信息存储和检索效率较高,可以与大模型的非结构化信息处理相结合,优化知识应用的可解释性
-
提高模型的泛化能力:通过将知识图谱整合到大模型中,可以增强大模型的泛化能力和特定领域的知识应用性能。例如,知识图谱可以为大模型提供最新的知识和信息,使其在不同领域和任务中表现更佳。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓