图卷积网络(GCN)通过谱域卷积算子实现节点特征的拓扑传播,能够有效捕获节点间的局部同构性,为节点分类、图分类以及链接预测等任务提供了精准的图表示学习框架。而 Transformer 凭借多头自注意力机制,在机器翻译、时序预测等全局依赖建模场景中展现出强大统治力。
GCN+Transformer 的架构融合创造了图神经网络的新型范式,为时空图预测、跨模态图学习等前沿领域提供了兼具鲁棒性与可解释性的算法基座:
-
通过图结构引导的稀疏注意力机制,将拓扑约束融入全局上下文建模;
-
利用 Transformer 的层次化编码能力增强 GCN 的深层传播效果;
-
构建可微分图结构学习模块,突破了传统 GCN 对显式拓扑结构的依赖。
本文精选13篇最新前沿论文,供有需要的同学无偿领取。整理不易,麻烦大家点个免费的赞哦~
一、E2CB2former: Effecitve and Explainable Transformer for CB2 Receptor Ligand Activity Prediction
1. 方法
本研究开发了一种先进的可解释预测模型CB2former,用于预测CB2受体配体活性,结合了图卷积网络(GCN)和Transformer架构,以提高预测准确性和可解释性。
该模型通过自注意力机制识别重要的分子特征,提供了CB2受体活性的深入理解;结合SMILES字符串和分子指纹的两种分子表示方法,以捕捉配体与受体之间的相互作用;引入了动态提示机制,将与CB2相关的结构知识直接注入模型,提升了模型的收敛速度。实验表明,CB2former在分子属性预测中表现优异,显示出比传统机器学习模型更高的预测性能。
2. 创新点
1)GCN与Transformer的结合
将GCN处理分子图结构的能力与Transformer的自注意力机制结合,既捕捉了分子的局部拓扑特征(如原子间键合关系),又通过注意力权重解析了全局长程依赖(如分子内远距离功能基团的作用)。
2)领域知识注入
通过动态提示将与CB2受体相关的结构先验知识(如关键药效团、受体结合位点信息)直接嵌入模型训练,避免了传统方法中依赖人工特征工程的繁琐流程。
3)SMILES与分子指纹的联合建模
同时利用SMILES字符串和分子指纹两种模态,全面表征分子的化学信息。这种多模态融合策略能更完整地反映配体-受体相互作用,弥补单一表示的不足。
论文链接:https://arxiv.org/abs/2502.12186
二、Unified Spatial-Temporal Edge-Enhanced Graph Networks for Pedestrian Trajectory Prediction
1.方法
本文提出一种新的统一时空边增强图网络(UniEdge),用于行人轨迹预测,旨在解决传统方法在建模高阶跨时间交互时的局限性。UniEdge采用边到边节点到节点图卷积(E2E-N2N-GCN),联合建模行人之间的显式社交交互和隐式影响传播,增强对复杂行人行为的建模能力;使用基于transformer的预测器,能够进行全局时序相关性建模,显著提高预测性能。
2. 创新点
1)双图架构(E2E-N2N-GCN)
UniEdge通过双图机制融合显式与隐式影响,更贴近真实复杂场景中行人的决策逻辑。
-
边到边图:显式捕捉行人间的物理社交交互(如避让、跟随)。
-
节点到节点图:隐式建模群体行为传播(如人群流动趋势、心理偏好)。
2)基于Transformer的全局预测器
传统自回归模型逐步预测轨迹时,容易因误差累积导致长期预测偏差。UniEdge利用Transformer的全局注意力机制,直接建模完整时序的依赖关系,避免局部视野限制,尤其适用于密集人群中的长时程轨迹预测。
论文链接:https://arxiv.org/abs/2502.02504
三、Towards Robust and Realistic Human Pose Estimation via WiFi Signals
1. 方法
本研究聚焦于WiFi信号基础上的人类姿态估计,提出了一种新颖的自监督方法,旨在解决跨域差距和结构保真度问题。采用自监督掩蔽预训练和拓扑约束姿态解码机制,结合任务提示、GCN和Transformer层,探索人类关节的内在空间特性,生成更真实的姿态。
2. 创新点
1)自监督掩蔽预训练框架
通过掩蔽WiFi信号的时间片段并强制模型重建,同时引入时间一致的对比学习,使模型学习到领域不变的运动表示。这一设计有效缓解了WiFi信号与人体姿态之间的跨域语义鸿沟,减少了对标注数据的依赖。
2)拓扑约束姿态解码机制
采用 GCN-Transformer混合架构,利用GCN显式建模人体关节的拓扑连接(如骨骼链),而Transformer层捕捉关节间的长程依赖(如左右对称关节的协同运动),二者互补提升结构保真度。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓